Araştırma Makalesi
BibTex RIS Kaynak Göster

AHŞAP SANDVİÇ PANEL ÇEKİRDEK MALZEMELERİ: ORGANİK VE İNORGANİK PARÇACIKLARLA DOLGULU RİJİD POLİÜRETAN (PU) KOMPOZİTLER

Yıl 2024, Cilt: 8 Sayı: 1, 18 - 31, 30.04.2024

Öz

Bu çalışmada, poliüretan ahşap tutkalına buğday unu (WF), saten yüzey bitirme sıvası (AL) ve üre formaldehit (UF) ilave edilerek poliüretan (PU) köpük kompozit üretilmiştir. Ahşap sandviç panellerin çekirdek katmanında kullanılabilecek, suya dayanıklı, vida tutma kuvveti yüksek, hafif ve sert PU köpük kompozitin üretilmesi çalışmanın amacını oluşturmaktadır. Bu amaçla PU'ya belirli oranlarda dolgu maddeleri eklenmiş ve numuneler mekanik olarak karıştırılarak köpürtülmüştür. Köpürme süresi yaklaşık 30 dakika sürmüştür. İlk 15 dakikada köpüğün karıştırılmasıyla köpük hacmi başlangıç seviyesine getirilmiştir. Sonraki 15 dakika boyunca köpüklenme devam etmiştir. Numuneler 2 saat ve 24 saat suda bekletilerek ilgili standartlara göre şişme (TS) ve su emme (WA) miktarları analiz edilmiştir. Ayrıca ilgili standarda göre vida tutma kuvvetleri (SR) analiz edilerek numunelerin mekanik karakterizasyonu yapılmıştır. Elde edilen sonuçlara göre WF ilavesinin numunelerin yoğunluğunu, su emmesini ve şişmesini arttırdığı belirlenmiştir. Bu olumsuz bir olaydır. Ancak bu artış yonga levha standart sınırlarını aşmamıştır. Öte yandan WF ilavesi numunelerin SR kuvvetlerini arttırmıştır. UF ilavesi, WF ilavesiyle birlikte kullanıldığında SR mukavemetinde önemli bir değişiklik yaratmamış, ancak UF, AL ile birlikte kullanıldığında SR gücünü önemli ölçüde azaltmıştır. Sonuç olarak PU köpüklere çeşitli dolgu maddeleri ilave edilerek daha sert bir yapı kazandırılabilir. Bu sayede vida tutma direnci artırılarak ahşap sandviç panellerin çekirdek katmanlarında kullanılabilmektedir. Böylece orman kaynaklarının korunmasına dolaylı olarak katkı sağlanmaktadır.

Kaynakça

  • Ashby, M., Evans, A., Fleck, N., Gibson, L., Hutchinson, J., Wadley, H., & Delale, F. (2001). Metal foams: A design guide. Applied Mechanics Reviews, 54(6), B105–B106. https://doi.org/10.1115/1.1421119.
  • Atiqah, A., T. Mastura, M., A Ahmed Ali, B., Jawaid, M., & M Sapuan, S. (2017). A review on polyurethane and its polymer composites. Current Organic Synthesis, 14(2), 233–248.
  • Chian, K. S., & Gan, L. H. (1998). Development of a rigid polyurethane foam from palm oil. Journal of Applied Polymer Science, 68(3), 509–515. https://doi.org/10.1002/(SICI)1097-4628(19980418)68:3<509: AID-APP17>3.0.CO;2-P.
  • Choupani Chaydarreh, K., Shalbafan, A., & Welling, J. (2017). Effect of ingredient ratios of rigid polyurethane foam on foam core panels properties. Journal of Applied Polymer Science, 134(17). https://doi.org/10.1002/app.44722.
  • Eckelman, C. (1975). "Screwholding performance in hardwoods and particleboard. Forest Products Journal 25, 6(1975), 30–35.
  • Gama, N., Ferreira, A., & Barros-Timmons, A. (2018). Polyurethane Foams: Past, Present, and Future. Materials, 11(10), 1841. https://doi.org/10.3390/ma11101841.
  • Gazzola, C., Caverni, S., & Corigliano, A. (2022). Design and modeling of a periodic single-phase sandwich panel for acoustic insulation applications. Frontiers in Materials, 9. https://doi.org/10.3389/fmats.2022.1005615.
  • Ghalami-Choobar, M., & Sadighi, M. (2014). Investigation of high velocity impact of cylindrical projectile on sandwich panels with fiber–metal laminates skins and polyurethane core. Aerospace Science and Technology, 32(1), 142–152. https://doi.org/10.1016/j.ast.2013.12.005.
  • Hu, Y. H., Gao, Y., Wang, D. N., Hu, C. P., Zu, S., Vanoverloop, L., & Randall, D. (2002). Rigid polyurethane foam prepared from a rape seed oil based polyol. Journal of Applied Polymer Science, 84(3), 591–597. https://doi.org/10.1002/app.10311.
  • Istek, A., Kurșun, C., Aydemir, D., Köksal, S. E., & Kelleci, O. (2017). The effect of particle ratios of surface layers on particleboard properties. Bartın Orman Fakültesi Dergisi, 19(1), 182–186.
  • Kang, K.-W., Kim, H. S., Kim, M. S., & Kim, J.-K. (2008). Strength reduction behavior of honeycomb sandwich structure subjected to low-velocity impact. Materials Science and Engineering: A, 483–484, 333–335. https://doi.org/10.1016/j.msea.2006.08.150.
  • Karlsson, K. F., & TomasAström, B. (1997). Manufacturing and applications of structural sandwich components. Composites Part A: Applied Science and Manufacturing, 28(2), 97–111. https://doi.org/10.1016/S1359-835X(96)00098-X.
  • Kawasaki, T., & Kawai, S. (2006). Thermal insulation properties of wood-based sandwich panel for use as structural insulated walls and floors. Journal of Wood Science, 52(1), 75–83. https://doi.org/10.1007/s10086-005-0720-0.
  • Khot, S. N., Lascala, J. J., Can, E., Morye, S. S., Williams, G. I., Palmese, G. R., Kusefoglu, S. H., & Wool, R. P. (2001). Development and application of triglyceride-based polymers and composites. Journal of Applied Polymer Science, 82(3), 703–723. https://doi.org/10.1002/app.1897.
  • Köksal, S. E., & Kelleci, O. (2023). Enhanced Screw Withdrawal Strength of Polyurethane (PU) Composites for Wood Sandwich Panel Core Layer. In İnnovatıve research in agriculture, forest and water issues (pp. 107–123). Duvar Publishing https://doi.org/10.59287/irafwi.477.
  • Lakreb, N., Bezzazi, B., & Pereira, H. (2015). Mechanical behavior of multilayered sandwich panels of wood veneer and a core of cork agglomerates. Materials & Design (1980-2015), 65, 627–636. https://doi.org/10.1016/j.matdes.2014.09.059.
  • Li, S., Wang, Z., Wu, G., Zhao, L., & Li, X. (2014). Dynamic response of sandwich spherical shell with graded metallic foam cores subjected to blast loading. Composites part A: Applied science and manufacturing, 56, 262–271. https://doi.org/10.1016/j.compositesa.2013.10.019.
  • Lou, C.-W., Huang, S.-Y., Yan, R., & Lin, J.-H. (2015). Manufacturing and mechanical characterization of perforated hybrid composites based on flexible polyurethane foam. Journal of Applied Polymer Science, 132(29), n/a-n/a. https://doi.org/10.1002/app.42288.
  • Ma, P., Zhang, F., Gao, Z., Jiang, G., & Zhu, Y. (2014). Transverse impact behaviors of glass warp-knitted fabric/foam sandwich composites through carbon nanotubes incorporation. Composites part B: Engineering, 56, 847–856. https://doi.org/10.1016/j.compositesb.2013.09.013.
  • Mohamed, M., Anandan, S., Huo, Z., Birman, V., Volz, J., & Chandrashekhara, K. (2015). Manufacturing and characterization of polyurethane based sandwich composite structures. Composite Structures, 123, 169–179. https://doi.org/10.1016/j.compstruct.2014.12.042.
  • Mohammadabadi, M., Yadama, V., & Dolan, J. D. (2021). Evaluation of wood composite sandwich panels as a promising renewable building material. Materials, 14(8), 2083. https://doi.org/10.3390/ma14082083.
  • Mohammadi, B., Safaiyan, A., Habibi, P., & Moradi, G. (2021). Evaluation of the acoustic performance of polyurethane foams embedded with rock wool fibers at low-frequency range; design and construction. Applied Acoustics, 182, 108223. https://doi.org/10.1016/j.apacoust.2021.108223.
  • Mülhaupt, R., Rösch, J., & Demharter, S. (1993). Organic microcomposites via reactive processing. Le Journal de Physique IV, 03(C7), C7-1519-C7-1524. https://doi.org/10.1051/jp4:19937237.
  • Osei-Antwi, M., de Castro, J., Vassilopoulos, A. P., & Keller, T. (2013). Shear mechanical characterization of balsa wood as core material of composite sandwich panels. Construction and Building Materials, 41, 231–238. https://doi.org/10.1016/j.conbuildmat.2012.11.009.
  • Sae-Ueng, K. (2021). Interaction of polyurethane with wood-based sandwich panels [Doctoral Dissertation]. Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky.
  • Şahin, S. (2020). Geçmiş,Günümüz ve Gelecekte Nüfus Gerçeği (5th ed.). Ankara Pegem Akademi Yayıncılık. https://doi.org/10.14527/9786053180173.
  • Shalbafan, A., Choupani Chaydarreh, K., & Welling, J. (2021). Effect of blowing agent concentration on rigid polyurethane foam and the properties of foam-core particleboard. Wood Material Science & Engineering, 16(2), 85–93. https://doi.org/10.1080/17480272.2019.1626480.
  • Shalbafan, A., Luedtke, J., Welling, J., & Fruehwald, A. (2013). Physiomechanical properties of ultra-lightweight foam core particleboard: different core densities. Holzforschung, 67(2), 169–175. https://doi.org/10.1515/hf-2012-0058.
  • Smardzewski, J. (2019). Wooden sandwich panels with prismatic core – Energy absorbing capabilities. Composite Structures, 230, 111535. https://doi.org/10.1016/j.compstruct.2019.111535.
  • Subramaniyan, S. K. (2019). Manufacture and Testing Carbon Fibre Lattice Core Sandwich Structures. The University of Liverpool (United Kingdom).
  • TSE EN 317. (1999). Yonga levhalar ve lif levhalar-Su içerisine daldırma işleminden sonra kalınlığına şişme tayini. Türk standartları enstitüsü, Ankara.
  • Ulay, G., & Güler, C. (2010, October 21). Köpüklü (poliüretan) ve petekli (honeycomb) kompozit lamine malzemelerin bazı teknolojik özelliklerinin incelenmesi. MYO-ÖS 2010- Ulusal Meslek Yüksekokulları Öğrenci Sempozyumu.
  • URL. (2023, August 27). Satin Surface Finishing Plaster. https://www.alcibay.com/en/products/satin-surface-finishing-plaster-4
  • Uysal, M., & Güntekin, E. (2024). Prediction of screw withdrawal resistance for plywood laminated panels and sandwich panels. Turkish Journal of Forestry | Türkiye Ormancılık Dergisi, 81–88. https://doi.org/10.18182/tjf.1375273.
  • Vaithylingam, R., Ansari, M. N. M., & Shanks, R. A. (2017). Recent advances in polyurethane-based nanocomposites: A review. Polymer-Plastics Technology and Engineering, 56(14), 1528–1541. https://doi.org/10.1080/03602559.2017.1280683.
  • Wadley, H. N. G. (2002). Cellular metals manufacturing. Advanced Engineering Materials, 4(10), 726–733. https://doi.org/10.1002/1527-2648(20021014)4:10<726: AID-ADEM726>3.0.CO;2-Y.
  • Woods, G. (1990). The ICI polyurethanes book. In The ICI Polyurethanes (2nd ed.). Wiley.
  • Wu, Q., Henriksson, M., Liu, X., & Berglund, L. A. (2007). A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules, 8(12), 3687–3692. https://doi.org/10.1021/bm701061t.
  • Xiong, J., Wang, B., Ma, L., Papadopoulos, J., Vaziri, A., & Wu, L. (2014). Three-dimensional composite lattice structures fabricated by electrical discharge machining. Experimental Mechanics, 54(3), 405–412. https://doi.org/10.1007/s11340-013-9801-y.

WOOD SANDWICH PANEL CORE MATERIALS: RIGID POLYURETHANE (PU) COMPOSITES FILLED WITH ORGANIC AND INORGANIC PARTICLES

Yıl 2024, Cilt: 8 Sayı: 1, 18 - 31, 30.04.2024

Öz

In this study, polyurethane (PU) foam composite was produced by adding wheat flour (WF), satin surface finishing plaster (AL) and urea formaldehyde (UF) into polyurethane wood glue. In this study, it is aimed to produce water resistant, high screw holding force and light weight and rigid PU foam composite that can be used in the core layer of wooden sandwich panels. For this purpose, the fillers were added to the PU in certain proportions and the samples were foamed by mechanical mixing. The foaming time lasted approximately 30 minutes. The foam volume was brought to its initial level by mixing the foam in the first 15 minutes. Foaming continued in the next 15 minutes. Samples were kept in water for 2 hours and 24 hours and their thickness swelling (TS) and water absorption (WA) amounts were analyzed according to the relevant standards. In addition, the mechanical characterization of the samples was carried out by analyzing the screw withdrawal strength (SR) according to the relevant standard. According to the results obtained, it was determined that the addition of WF increased the densities, water absorption and swelling of the samples. This is a negative event. However, this increase did not exceed the particleboard standard limits. On the other hand, the addition of WF increased the SR forces of the samples. The addition of UF did not make a significant change in the SR strength when used with the addition of WF. However, UF significantly reduced the SR strength when used with AL. As a result, PU foams can be given a more rigid structure by using various fillers. In this way, the screw holding resistance can be increased and it can be used in the core layers of wooden sandwich panels. Thus, it indirectly contributes to the protection of forest resources.

Kaynakça

  • Ashby, M., Evans, A., Fleck, N., Gibson, L., Hutchinson, J., Wadley, H., & Delale, F. (2001). Metal foams: A design guide. Applied Mechanics Reviews, 54(6), B105–B106. https://doi.org/10.1115/1.1421119.
  • Atiqah, A., T. Mastura, M., A Ahmed Ali, B., Jawaid, M., & M Sapuan, S. (2017). A review on polyurethane and its polymer composites. Current Organic Synthesis, 14(2), 233–248.
  • Chian, K. S., & Gan, L. H. (1998). Development of a rigid polyurethane foam from palm oil. Journal of Applied Polymer Science, 68(3), 509–515. https://doi.org/10.1002/(SICI)1097-4628(19980418)68:3<509: AID-APP17>3.0.CO;2-P.
  • Choupani Chaydarreh, K., Shalbafan, A., & Welling, J. (2017). Effect of ingredient ratios of rigid polyurethane foam on foam core panels properties. Journal of Applied Polymer Science, 134(17). https://doi.org/10.1002/app.44722.
  • Eckelman, C. (1975). "Screwholding performance in hardwoods and particleboard. Forest Products Journal 25, 6(1975), 30–35.
  • Gama, N., Ferreira, A., & Barros-Timmons, A. (2018). Polyurethane Foams: Past, Present, and Future. Materials, 11(10), 1841. https://doi.org/10.3390/ma11101841.
  • Gazzola, C., Caverni, S., & Corigliano, A. (2022). Design and modeling of a periodic single-phase sandwich panel for acoustic insulation applications. Frontiers in Materials, 9. https://doi.org/10.3389/fmats.2022.1005615.
  • Ghalami-Choobar, M., & Sadighi, M. (2014). Investigation of high velocity impact of cylindrical projectile on sandwich panels with fiber–metal laminates skins and polyurethane core. Aerospace Science and Technology, 32(1), 142–152. https://doi.org/10.1016/j.ast.2013.12.005.
  • Hu, Y. H., Gao, Y., Wang, D. N., Hu, C. P., Zu, S., Vanoverloop, L., & Randall, D. (2002). Rigid polyurethane foam prepared from a rape seed oil based polyol. Journal of Applied Polymer Science, 84(3), 591–597. https://doi.org/10.1002/app.10311.
  • Istek, A., Kurșun, C., Aydemir, D., Köksal, S. E., & Kelleci, O. (2017). The effect of particle ratios of surface layers on particleboard properties. Bartın Orman Fakültesi Dergisi, 19(1), 182–186.
  • Kang, K.-W., Kim, H. S., Kim, M. S., & Kim, J.-K. (2008). Strength reduction behavior of honeycomb sandwich structure subjected to low-velocity impact. Materials Science and Engineering: A, 483–484, 333–335. https://doi.org/10.1016/j.msea.2006.08.150.
  • Karlsson, K. F., & TomasAström, B. (1997). Manufacturing and applications of structural sandwich components. Composites Part A: Applied Science and Manufacturing, 28(2), 97–111. https://doi.org/10.1016/S1359-835X(96)00098-X.
  • Kawasaki, T., & Kawai, S. (2006). Thermal insulation properties of wood-based sandwich panel for use as structural insulated walls and floors. Journal of Wood Science, 52(1), 75–83. https://doi.org/10.1007/s10086-005-0720-0.
  • Khot, S. N., Lascala, J. J., Can, E., Morye, S. S., Williams, G. I., Palmese, G. R., Kusefoglu, S. H., & Wool, R. P. (2001). Development and application of triglyceride-based polymers and composites. Journal of Applied Polymer Science, 82(3), 703–723. https://doi.org/10.1002/app.1897.
  • Köksal, S. E., & Kelleci, O. (2023). Enhanced Screw Withdrawal Strength of Polyurethane (PU) Composites for Wood Sandwich Panel Core Layer. In İnnovatıve research in agriculture, forest and water issues (pp. 107–123). Duvar Publishing https://doi.org/10.59287/irafwi.477.
  • Lakreb, N., Bezzazi, B., & Pereira, H. (2015). Mechanical behavior of multilayered sandwich panels of wood veneer and a core of cork agglomerates. Materials & Design (1980-2015), 65, 627–636. https://doi.org/10.1016/j.matdes.2014.09.059.
  • Li, S., Wang, Z., Wu, G., Zhao, L., & Li, X. (2014). Dynamic response of sandwich spherical shell with graded metallic foam cores subjected to blast loading. Composites part A: Applied science and manufacturing, 56, 262–271. https://doi.org/10.1016/j.compositesa.2013.10.019.
  • Lou, C.-W., Huang, S.-Y., Yan, R., & Lin, J.-H. (2015). Manufacturing and mechanical characterization of perforated hybrid composites based on flexible polyurethane foam. Journal of Applied Polymer Science, 132(29), n/a-n/a. https://doi.org/10.1002/app.42288.
  • Ma, P., Zhang, F., Gao, Z., Jiang, G., & Zhu, Y. (2014). Transverse impact behaviors of glass warp-knitted fabric/foam sandwich composites through carbon nanotubes incorporation. Composites part B: Engineering, 56, 847–856. https://doi.org/10.1016/j.compositesb.2013.09.013.
  • Mohamed, M., Anandan, S., Huo, Z., Birman, V., Volz, J., & Chandrashekhara, K. (2015). Manufacturing and characterization of polyurethane based sandwich composite structures. Composite Structures, 123, 169–179. https://doi.org/10.1016/j.compstruct.2014.12.042.
  • Mohammadabadi, M., Yadama, V., & Dolan, J. D. (2021). Evaluation of wood composite sandwich panels as a promising renewable building material. Materials, 14(8), 2083. https://doi.org/10.3390/ma14082083.
  • Mohammadi, B., Safaiyan, A., Habibi, P., & Moradi, G. (2021). Evaluation of the acoustic performance of polyurethane foams embedded with rock wool fibers at low-frequency range; design and construction. Applied Acoustics, 182, 108223. https://doi.org/10.1016/j.apacoust.2021.108223.
  • Mülhaupt, R., Rösch, J., & Demharter, S. (1993). Organic microcomposites via reactive processing. Le Journal de Physique IV, 03(C7), C7-1519-C7-1524. https://doi.org/10.1051/jp4:19937237.
  • Osei-Antwi, M., de Castro, J., Vassilopoulos, A. P., & Keller, T. (2013). Shear mechanical characterization of balsa wood as core material of composite sandwich panels. Construction and Building Materials, 41, 231–238. https://doi.org/10.1016/j.conbuildmat.2012.11.009.
  • Sae-Ueng, K. (2021). Interaction of polyurethane with wood-based sandwich panels [Doctoral Dissertation]. Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky.
  • Şahin, S. (2020). Geçmiş,Günümüz ve Gelecekte Nüfus Gerçeği (5th ed.). Ankara Pegem Akademi Yayıncılık. https://doi.org/10.14527/9786053180173.
  • Shalbafan, A., Choupani Chaydarreh, K., & Welling, J. (2021). Effect of blowing agent concentration on rigid polyurethane foam and the properties of foam-core particleboard. Wood Material Science & Engineering, 16(2), 85–93. https://doi.org/10.1080/17480272.2019.1626480.
  • Shalbafan, A., Luedtke, J., Welling, J., & Fruehwald, A. (2013). Physiomechanical properties of ultra-lightweight foam core particleboard: different core densities. Holzforschung, 67(2), 169–175. https://doi.org/10.1515/hf-2012-0058.
  • Smardzewski, J. (2019). Wooden sandwich panels with prismatic core – Energy absorbing capabilities. Composite Structures, 230, 111535. https://doi.org/10.1016/j.compstruct.2019.111535.
  • Subramaniyan, S. K. (2019). Manufacture and Testing Carbon Fibre Lattice Core Sandwich Structures. The University of Liverpool (United Kingdom).
  • TSE EN 317. (1999). Yonga levhalar ve lif levhalar-Su içerisine daldırma işleminden sonra kalınlığına şişme tayini. Türk standartları enstitüsü, Ankara.
  • Ulay, G., & Güler, C. (2010, October 21). Köpüklü (poliüretan) ve petekli (honeycomb) kompozit lamine malzemelerin bazı teknolojik özelliklerinin incelenmesi. MYO-ÖS 2010- Ulusal Meslek Yüksekokulları Öğrenci Sempozyumu.
  • URL. (2023, August 27). Satin Surface Finishing Plaster. https://www.alcibay.com/en/products/satin-surface-finishing-plaster-4
  • Uysal, M., & Güntekin, E. (2024). Prediction of screw withdrawal resistance for plywood laminated panels and sandwich panels. Turkish Journal of Forestry | Türkiye Ormancılık Dergisi, 81–88. https://doi.org/10.18182/tjf.1375273.
  • Vaithylingam, R., Ansari, M. N. M., & Shanks, R. A. (2017). Recent advances in polyurethane-based nanocomposites: A review. Polymer-Plastics Technology and Engineering, 56(14), 1528–1541. https://doi.org/10.1080/03602559.2017.1280683.
  • Wadley, H. N. G. (2002). Cellular metals manufacturing. Advanced Engineering Materials, 4(10), 726–733. https://doi.org/10.1002/1527-2648(20021014)4:10<726: AID-ADEM726>3.0.CO;2-Y.
  • Woods, G. (1990). The ICI polyurethanes book. In The ICI Polyurethanes (2nd ed.). Wiley.
  • Wu, Q., Henriksson, M., Liu, X., & Berglund, L. A. (2007). A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules, 8(12), 3687–3692. https://doi.org/10.1021/bm701061t.
  • Xiong, J., Wang, B., Ma, L., Papadopoulos, J., Vaziri, A., & Wu, L. (2014). Three-dimensional composite lattice structures fabricated by electrical discharge machining. Experimental Mechanics, 54(3), 405–412. https://doi.org/10.1007/s11340-013-9801-y.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ahşap İşleme, Ormancılık (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Süheyla Esin Köksal 0000-0001-7970-8412

Orhan Kelleci 0000-0003-4501-0854

Yayımlanma Tarihi 30 Nisan 2024
Gönderilme Tarihi 9 Kasım 2023
Kabul Tarihi 24 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 8 Sayı: 1

Kaynak Göster

APA Köksal, S. E., & Kelleci, O. (2024). WOOD SANDWICH PANEL CORE MATERIALS: RIGID POLYURETHANE (PU) COMPOSITES FILLED WITH ORGANIC AND INORGANIC PARTICLES. Turkish Journal of Forest Science, 8(1), 18-31.
AMA Köksal SE, Kelleci O. WOOD SANDWICH PANEL CORE MATERIALS: RIGID POLYURETHANE (PU) COMPOSITES FILLED WITH ORGANIC AND INORGANIC PARTICLES. Turk J For Sci. Nisan 2024;8(1):18-31.
Chicago Köksal, Süheyla Esin, ve Orhan Kelleci. “WOOD SANDWICH PANEL CORE MATERIALS: RIGID POLYURETHANE (PU) COMPOSITES FILLED WITH ORGANIC AND INORGANIC PARTICLES”. Turkish Journal of Forest Science 8, sy. 1 (Nisan 2024): 18-31.
EndNote Köksal SE, Kelleci O (01 Nisan 2024) WOOD SANDWICH PANEL CORE MATERIALS: RIGID POLYURETHANE (PU) COMPOSITES FILLED WITH ORGANIC AND INORGANIC PARTICLES. Turkish Journal of Forest Science 8 1 18–31.
IEEE S. E. Köksal ve O. Kelleci, “WOOD SANDWICH PANEL CORE MATERIALS: RIGID POLYURETHANE (PU) COMPOSITES FILLED WITH ORGANIC AND INORGANIC PARTICLES”, Turk J For Sci, c. 8, sy. 1, ss. 18–31, 2024.
ISNAD Köksal, Süheyla Esin - Kelleci, Orhan. “WOOD SANDWICH PANEL CORE MATERIALS: RIGID POLYURETHANE (PU) COMPOSITES FILLED WITH ORGANIC AND INORGANIC PARTICLES”. Turkish Journal of Forest Science 8/1 (Nisan 2024), 18-31.
JAMA Köksal SE, Kelleci O. WOOD SANDWICH PANEL CORE MATERIALS: RIGID POLYURETHANE (PU) COMPOSITES FILLED WITH ORGANIC AND INORGANIC PARTICLES. Turk J For Sci. 2024;8:18–31.
MLA Köksal, Süheyla Esin ve Orhan Kelleci. “WOOD SANDWICH PANEL CORE MATERIALS: RIGID POLYURETHANE (PU) COMPOSITES FILLED WITH ORGANIC AND INORGANIC PARTICLES”. Turkish Journal of Forest Science, c. 8, sy. 1, 2024, ss. 18-31.
Vancouver Köksal SE, Kelleci O. WOOD SANDWICH PANEL CORE MATERIALS: RIGID POLYURETHANE (PU) COMPOSITES FILLED WITH ORGANIC AND INORGANIC PARTICLES. Turk J For Sci. 2024;8(1):18-31.