Araştırma Makalesi
BibTex RIS Kaynak Göster

AGRICULTURAL DROUGHT ANALYSIS BASED ON REMOTE SENSING: THE CASE OF AYDIN, TURKIYE

Yıl 2024, Cilt: 8 Sayı: 2, 133 - 146, 31.10.2024
https://doi.org/10.32328/turkjforsci.1508796

Öz

Agricultural drought is a phenomenon that arises when there is a deficiency of moisture in the soil, which has a detrimental impact on the productivity of agricultural crops. In Aydın, Turkey, particularly in the fertile Söke Plain region, agricultural drought is a major problem for farmers. The use of satellite data based on remote sensing and the indices derived from them allows for the timely and spatially detailed monitoring of vegetation health and moisture conditions over large areas. This enables the early detection and monitoring of agricultural drought. The present study evaluates the occurrence of agricultural drought in Aydın province between 1995 and 2020. For this purpose, satellite images captured by the Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) in August 1995 and 2020 and land cover maps produced by the European Space Agency (ESA) at the same dates were utilized. The Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) indices were produced using Landsat satellite images. Then, the Vegetation Temperature Condition Index (VTCI) was obtained to detect agricultural drought. Finally, the relationship between the VTCI and land cover (LC) was evaluated, as well as the changes in the VTCI index between 1995 and 2020. The study found that agricultural drought increased with rising land surface temperature and declining NDVI values in Aydın province between 1995 and 2020.

Kaynakça

  • AghaKouchak, A., Farahmand, A., Melton, F. S., Teixeira, J., Anderson, M. C., Wardlow, B. D., & Hain, C. R. (2015). Remote sensing of drought: Progress, challenges and opportunities. Reviews of Geophysics, 53(2), 452-480.
  • Akçay, S., Ul, M. A., & Gürgülü, H. (2007). Aydın yöresinde sulama yönünden kuraklık analizi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 44(1), 137-147.
  • Belal, A. A., El-Ramady, H. R., Mohamed, E. S., & Saleh, A. M. (2014). Drought risk assessment using remote sensing and GIS techniques. Arabian Journal of Geosciences, 7, 35-53.
  • Buma, W. G., & Lee, S. I. (2019). Multispectral image-based estimation of drought patterns and intensity around Lake Chad, Africa. Remote Sensing, 11(21), 2534.
  • Chang-Fung-Martel, J., Harrison, M. T., Rawnsley, R., Smith, A. P., & Meinke, H. (2017). The impact of extreme climatic events on pasture-based dairy systems: a review. Crop and Pasture Science, 68(12), 1158-1169.
  • Dai, A. (2011). Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 45-65.
  • Desktop, E. A. (2011). Release 10. Redlands, CA: Environmental Systems Research Institute, 437, 438. Fleming‐Muñoz, D. A., Whitten, S., & Bonnett, G. D. (2023). The economics of drought: A review of impacts and costs. Australian Journal of Agricultural and Resource Economics, 67(4), 501-523.
  • Jo H-W, Lee W-K. (2023). Deep learning & Remote sensing analysis for Agroforesty and Drought (DRYAD). Zenodo.
  • Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., Gutman, G. G., Panov, N. & Goldberg, A. (2010). Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of climate, 23(3), 618-633.
  • Lund, J., Medellin-Azuara, J., Durand, J., & Stone, K. (2018). Lessons from California’s 2012–2016 drought. Journal of Water Resources Planning and Management, 144(10), 04018067.
  • Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of hydrology, 391(1-2), 202-216.
  • Navalgund, R. R., Jayaraman, V., & Roy, P. S. (2007). Remote sensing applications: An overview. current science, 1747-1766.
  • Orimoloye, I. R., Belle, J. A., Orimoloye, Y. M., Olusola, A. O., & Ololade, O. O. (2022). Drought: A common environmental disaster. Atmosphere, 13(1), 111.
  • Reddy, G. O. (2018). Geospatial technologies in land resources mapping, monitoring, and management: An overview (pp. 1-18). Springer International Publishing.
  • Thenkabail, P. S., Lyon, J. G., & Huete, A. (2018). Advances in hyperspectral remote sensing of vegetation and agricultural crops. In Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation (pp. 3-37). CRC press.
  • Tomaszewski, B. (2020). Geographic information systems (GIS) for disaster management. Routledge.
  • Tonyaloğlu, E. E., & Atak, B. K. (2022). Estimation of spatiotemporal variation in potential ecosystem services: A case study of Aydın, Turkey. In Creating Resilient Landscapes in an Era of Climate Change (pp. 217-230). Routledge.
  • Wan, Z., Wang, P., & Li, X. (2004). Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA. International Journal of Remote Sensing, 25(1), 61-72.
  • Wandel, J., Diaz, H., Warren, J., Hadarits, M., Hurlbert, M., & Pittman, J. (2016). Drought and vulnerability: A conceptual approach. Vulnerability and Adaptation to Drought: The Canadian Prairies and South America, 15-36.
  • Wang, L., & Qu, J. J. (2009). Satellite remote sensing applications for surface soil moisture monitoring: A review. Frontiers of Earth Science in China, 3, 237-247.
  • Yetmen, H. (2013). Türkiye’nin kuraklık analizi. Ankara Üniversitesi Sosyal Bilimleri Enstitüsü Doktora Tezi. Ankara.
  • Yılmaz, G. (2023). Kuraklık ve Sıcak Hava Dalgasının Tarımsal Üretim Üzerine Etkileri. Doğal Afetler ve Çevre Dergisi, 9(2), 240-257.
  • Yüksel, N., & Sürmen, M. (2019). Aydın İlinde 2013-2017 Döneminde Tarımsal Ürün İhracatının Genel Bir Değerlendirmesi. Türk Doğa ve Fen Dergisi, 8(2), 6-9.

UZAKTAN ALGILAMAYA DAYALI TARIMSAL KURAKLIK ANALİZİ: AYDIN, TÜRKİYE ÖRNEĞİ

Yıl 2024, Cilt: 8 Sayı: 2, 133 - 146, 31.10.2024
https://doi.org/10.32328/turkjforsci.1508796

Öz

Tarımsal kuraklık, toprakta nem eksikliği olduğunda ortaya çıkan ve tarımsal ürünlerin verimliliği üzerinde zararlı etkisi olan bir olaydır. Aydın'da, Türkiye'de, özellikle de verimli Söke Ovası bölgesinde, tarımsal kuraklık çiftçiler için önemli bir problem oluşturmaktadır. Uzaktan algılamaya dayalı uydu verilerinin ve bunlardan elde edilen indekslerin kullanımı, geniş alanlarda bitki sağlığı ve nem koşullarının zamanında ve mekansal olarak ayrıntılı bir şekilde izlenmesine olanak tanımaktadır. Bu da tarımsal kuraklığın erken tespitini ve izlenmesini mümkün kılmaktadır. Bu çalışma, 1995-2020 yılları arasında Aydın ilinde tarımsal kuraklık oluşumunu değerlendirmeyi amaçlamaktadır. Bu kapsamda, Landsat 5 Thematic Mapper (TM) ve Landsat 8 Operational Land Imager (OLI) uydularının 1995 ve 2020 Ağustos aylarında elde ettiği uydu görüntüleri ile Avrupa Uzay Ajansı (ESA) tarafından aynı tarihlerde üretilen arazi örtüsü haritaları kullanılmıştır. Landsat uydu görüntüleri kullanılarak Arazi Yüzey Sıcaklığı (LST) ve Normalize Fark Bitki İndeksi (NDVI) indeksleri üretilmiştir. Ardından, tarımsal kuraklığı tespit etmek için Bitki Örtüsü Sıcaklık Durumu İndeksi (VTCI) elde edilmiştir. Son olarak, VTCI ile arazi örtüsü (AÖ) arasındaki ilişki ve 1995-2020 yılları arasında VTCI indeksindeki değişiklikler değerlendirilmiştir. Çalışma, 1995-2020 yılları arasında Aydın ilinde artan arazi yüzey sıcaklığı ve azalan NDVI değerleri ile birlikte tarımsal kuraklığın arttığını ortaya koymuştur.

Etik Beyan

Bu çalışma Hitit Üniversitesi tarafından 23-24 Mayıs 2024 tarihlerinde gerçekleştirilen IV. Ulusal Tarım ve Gıda Çalıştayı'nda sunulmuş ancak tam metin olarak yayınlanmamıştır.

Kaynakça

  • AghaKouchak, A., Farahmand, A., Melton, F. S., Teixeira, J., Anderson, M. C., Wardlow, B. D., & Hain, C. R. (2015). Remote sensing of drought: Progress, challenges and opportunities. Reviews of Geophysics, 53(2), 452-480.
  • Akçay, S., Ul, M. A., & Gürgülü, H. (2007). Aydın yöresinde sulama yönünden kuraklık analizi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 44(1), 137-147.
  • Belal, A. A., El-Ramady, H. R., Mohamed, E. S., & Saleh, A. M. (2014). Drought risk assessment using remote sensing and GIS techniques. Arabian Journal of Geosciences, 7, 35-53.
  • Buma, W. G., & Lee, S. I. (2019). Multispectral image-based estimation of drought patterns and intensity around Lake Chad, Africa. Remote Sensing, 11(21), 2534.
  • Chang-Fung-Martel, J., Harrison, M. T., Rawnsley, R., Smith, A. P., & Meinke, H. (2017). The impact of extreme climatic events on pasture-based dairy systems: a review. Crop and Pasture Science, 68(12), 1158-1169.
  • Dai, A. (2011). Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 45-65.
  • Desktop, E. A. (2011). Release 10. Redlands, CA: Environmental Systems Research Institute, 437, 438. Fleming‐Muñoz, D. A., Whitten, S., & Bonnett, G. D. (2023). The economics of drought: A review of impacts and costs. Australian Journal of Agricultural and Resource Economics, 67(4), 501-523.
  • Jo H-W, Lee W-K. (2023). Deep learning & Remote sensing analysis for Agroforesty and Drought (DRYAD). Zenodo.
  • Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., Gutman, G. G., Panov, N. & Goldberg, A. (2010). Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of climate, 23(3), 618-633.
  • Lund, J., Medellin-Azuara, J., Durand, J., & Stone, K. (2018). Lessons from California’s 2012–2016 drought. Journal of Water Resources Planning and Management, 144(10), 04018067.
  • Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of hydrology, 391(1-2), 202-216.
  • Navalgund, R. R., Jayaraman, V., & Roy, P. S. (2007). Remote sensing applications: An overview. current science, 1747-1766.
  • Orimoloye, I. R., Belle, J. A., Orimoloye, Y. M., Olusola, A. O., & Ololade, O. O. (2022). Drought: A common environmental disaster. Atmosphere, 13(1), 111.
  • Reddy, G. O. (2018). Geospatial technologies in land resources mapping, monitoring, and management: An overview (pp. 1-18). Springer International Publishing.
  • Thenkabail, P. S., Lyon, J. G., & Huete, A. (2018). Advances in hyperspectral remote sensing of vegetation and agricultural crops. In Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation (pp. 3-37). CRC press.
  • Tomaszewski, B. (2020). Geographic information systems (GIS) for disaster management. Routledge.
  • Tonyaloğlu, E. E., & Atak, B. K. (2022). Estimation of spatiotemporal variation in potential ecosystem services: A case study of Aydın, Turkey. In Creating Resilient Landscapes in an Era of Climate Change (pp. 217-230). Routledge.
  • Wan, Z., Wang, P., & Li, X. (2004). Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA. International Journal of Remote Sensing, 25(1), 61-72.
  • Wandel, J., Diaz, H., Warren, J., Hadarits, M., Hurlbert, M., & Pittman, J. (2016). Drought and vulnerability: A conceptual approach. Vulnerability and Adaptation to Drought: The Canadian Prairies and South America, 15-36.
  • Wang, L., & Qu, J. J. (2009). Satellite remote sensing applications for surface soil moisture monitoring: A review. Frontiers of Earth Science in China, 3, 237-247.
  • Yetmen, H. (2013). Türkiye’nin kuraklık analizi. Ankara Üniversitesi Sosyal Bilimleri Enstitüsü Doktora Tezi. Ankara.
  • Yılmaz, G. (2023). Kuraklık ve Sıcak Hava Dalgasının Tarımsal Üretim Üzerine Etkileri. Doğal Afetler ve Çevre Dergisi, 9(2), 240-257.
  • Yüksel, N., & Sürmen, M. (2019). Aydın İlinde 2013-2017 Döneminde Tarımsal Ürün İhracatının Genel Bir Değerlendirmesi. Türk Doğa ve Fen Dergisi, 8(2), 6-9.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Peyzaj Mimarlığında Arazi ve Su Kaynakları, Peyzaj Mimarlığında Bilgisayar Teknolojileri, Fotogrametri ve Uzaktan Algılama
Bölüm Araştırma Makalesi
Yazarlar

Ebru Ersoy Tonyaloğlu 0000-0002-2945-3885

Birsen Kesgin Atak 0000-0003-4786-0801

Yayımlanma Tarihi 31 Ekim 2024
Gönderilme Tarihi 2 Temmuz 2024
Kabul Tarihi 22 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 8 Sayı: 2

Kaynak Göster

APA Ersoy Tonyaloğlu, E., & Kesgin Atak, B. (2024). AGRICULTURAL DROUGHT ANALYSIS BASED ON REMOTE SENSING: THE CASE OF AYDIN, TURKIYE. Turkish Journal of Forest Science, 8(2), 133-146. https://doi.org/10.32328/turkjforsci.1508796
AMA Ersoy Tonyaloğlu E, Kesgin Atak B. AGRICULTURAL DROUGHT ANALYSIS BASED ON REMOTE SENSING: THE CASE OF AYDIN, TURKIYE. Turk J For Sci. Ekim 2024;8(2):133-146. doi:10.32328/turkjforsci.1508796
Chicago Ersoy Tonyaloğlu, Ebru, ve Birsen Kesgin Atak. “AGRICULTURAL DROUGHT ANALYSIS BASED ON REMOTE SENSING: THE CASE OF AYDIN, TURKIYE”. Turkish Journal of Forest Science 8, sy. 2 (Ekim 2024): 133-46. https://doi.org/10.32328/turkjforsci.1508796.
EndNote Ersoy Tonyaloğlu E, Kesgin Atak B (01 Ekim 2024) AGRICULTURAL DROUGHT ANALYSIS BASED ON REMOTE SENSING: THE CASE OF AYDIN, TURKIYE. Turkish Journal of Forest Science 8 2 133–146.
IEEE E. Ersoy Tonyaloğlu ve B. Kesgin Atak, “AGRICULTURAL DROUGHT ANALYSIS BASED ON REMOTE SENSING: THE CASE OF AYDIN, TURKIYE”, Turk J For Sci, c. 8, sy. 2, ss. 133–146, 2024, doi: 10.32328/turkjforsci.1508796.
ISNAD Ersoy Tonyaloğlu, Ebru - Kesgin Atak, Birsen. “AGRICULTURAL DROUGHT ANALYSIS BASED ON REMOTE SENSING: THE CASE OF AYDIN, TURKIYE”. Turkish Journal of Forest Science 8/2 (Ekim 2024), 133-146. https://doi.org/10.32328/turkjforsci.1508796.
JAMA Ersoy Tonyaloğlu E, Kesgin Atak B. AGRICULTURAL DROUGHT ANALYSIS BASED ON REMOTE SENSING: THE CASE OF AYDIN, TURKIYE. Turk J For Sci. 2024;8:133–146.
MLA Ersoy Tonyaloğlu, Ebru ve Birsen Kesgin Atak. “AGRICULTURAL DROUGHT ANALYSIS BASED ON REMOTE SENSING: THE CASE OF AYDIN, TURKIYE”. Turkish Journal of Forest Science, c. 8, sy. 2, 2024, ss. 133-46, doi:10.32328/turkjforsci.1508796.
Vancouver Ersoy Tonyaloğlu E, Kesgin Atak B. AGRICULTURAL DROUGHT ANALYSIS BASED ON REMOTE SENSING: THE CASE OF AYDIN, TURKIYE. Turk J For Sci. 2024;8(2):133-46.