Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 4 Sayı: 1, 38 - 42, 30.06.2023
https://doi.org/10.51801/turkjrfs.1281604

Öz

Kaynakça

  • Abd El-Mageed, T.A., Rady, M.M., Taha, R.S., Abd El Azeam, S., Simpson, C.R. & Semida, W.M. (2020). Effects of integrated use of residual sulfur-enhanced biochar with effective microorganisms on soil properties. plant growth and short-term productivity of Capsicum annuum under salt stress. Sci. Hortic. 261 s.
  • Alekel, L., Hasler, C.M., Juma, S., Drum, B.W. & Kukreja, S.C. (1998). Role of soybean protein with normal or reduced isoflavone content in reversing boneloss induced by ovarian hormone deficiency in rats. American Journal of Clinical Nutrition 68: 1358-1363.
  • Ashraf, M. & Wu, L. (1994). Breeding for salinity tolerance in plants. Critical Reviews in Plant Sciences. 13(1): 17-42. Bressan, R.A. (2008). ‘‘Stress Physiology’’. Editors: Taiz. L. and Zeiger. E., Translation Editor: Türkan D., Palme Publishing. Ankara, 591-620 s.
  • Chaganti, V.N., Crohn, D.M. & Šimůnek, J. (2015). Leaching and reclamation of a biochar and compost amended saline–sodic soil with moderate SAR reclaimed water Agr. Water Mgt. 158 s.
  • Demir I. & Mazi K. 2008. Effect of salt and osmotic stresses on the germination of pepper seeds of different maturation stages. Braz. Arch. Biol. Technol. 51: 897-902.
  • Drake, J.A., Cavagnaro, T.R., Cunningham, S.C., Jackson, W.R. & Patti, A.F. (2016). Does biochar improve establishment of tree seedlings in saline sodic soils? L. Degrad. Dev., 27: 52–59.
  • Ekinci, M., Turan, M. & Yildirim, E. (2022). Biochar mitigates salt stress by regulating nutrient uptake and antioxidant activity. alleviating the oxidative stress and abscisic acid content in cabbage seedlings. Turk J Agric For. 46: 28-37.
  • Galvan-Ampudia, C.S. & Testerink, C. (2011). Salt stress signals shape the plant root. Curr. Opin. Plant Biol. 14: 296–302.
  • Graham, P.H. & Vance, C.P. (2003). Legumes: Importance and constraints to greater use. Plant Physiology. 131: 872-877.
  • Gorham, J., Mcdonnel, E. & Wyn Jones, R.G. (1985). Salt Tolerance in the Triticeae: Growth and Solute Accumulation in Leaves of Thinopyrum bessa rabicum. J. Exp. Bot. 36: 1021-1031.
  • Guo, R., Yang, Z., Li, F., Yan, C., Zhong, X., Liu, Q., Xia, X., Li, H. & Zhao, L. (2015). Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biology, 15: 170 s.
  • Gungor, Y. & Eroz, Z. (1994). Drainage and Land Reclamation. Ankara University, Faculty of Agriculture Publications, No:1341, Ankara. 232 s.
  • Kanber, R., Cullu, M.A., Kendirli, B., Antepli, S. & Yilmaz, N. (2005). Irrigation. Drainage and Salinity. Turkey Agricultural Engineering VI. Technical Congress. Ankara. 213-251 s.
  • Karabay, U. (2017). Mitigating Potential of Biochar Application on The Negative Impact of Soil Salinity on Plant. Master Thesis. University of Ege, Institute of Science. Department of Biology, Izmir.
  • Kul, R., Ekinci, M., Turan, M. & Yildirim, E. (2021). Impact of Biochar on Growth. Physiology and Antioxidant Activity of Common Bean Subjected to Salinity Stress. Global Journal of Botanical Science. 9: 8-13.
  • Kusvuran, Ş., Yasar, F., Abak, K. & Ellialtioglu, Ş. (2008). Changes in lipid peroxidation. chlorophyll and ion amount in some genotypes of salt tolerant and sensitive Cucumis sp. grown under salt stress. Yuzuncu Yil University. Faculty of Agriculture. Journal of Agricultural Sciences (J. Agric. Sci.). 18(1): 13-20.
  • Liu, S., Zhang, M., Feng, F. & Tian, Z. (2020). Toward a “green revolution” for soybean. Molecular Plant. 3: 688-697.
  • Lorenz, K. & Lal, R. (2014). Soil Organic Carbon Sequestration in Agroforestry Systems. A Review. Agronomy for Sustainable Development. 34: 443-454.
  • Lucas, E.A., Khalil, D.A., Daggy, B.P. & Arjmandi, B.H. (2001). Ethanol-extracted soy protein isolate does not modulate serum cholesterol in golden Syrian hamsters: A model of postmenopausal hypercholesterolemia. Journal of Nutrition 131: 211-214.
  • Mugdal, V., Madaan, N. & Mudgal, A. (2010). Biochemical mechanisms of salt tolerance in plants: a review. International Journal of Botany. 6(2): 136-143.
  • Parida, A.K. & Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety. 60: 324- 349.
  • Rizwan, M., Ali, S., Qayyum, M.F., Ibrahim, M., Zia-ur-Rehman, M., Abbas, T. & Ok, Y.S. (2016). Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: A critical review. Environ. Sci. Pollut. Res. 23: 2230–2248.
  • Rouphael, Y., Cardarelli, M., Rea, E. & Colla, G. (2012). Improving melon and cucumber photosynthetic activity, mineral composition. and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. Photosynthetica. 50(2): 180-188.
  • Wu, Y., Xu, G., Shao & H.B. (2014). Furfural and its biochar improve the general properties of a saline soil. Solid Earth 5: 665–671.
  • Yildirim, E., Turan, M. & Guvenc, I. (2008). Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of Plant Nutrition. 31(3): 593-61.
  • Zhu, J., Bie, Z. & Li, Y. (2008). Physiological and growth responses of two different saltsensitive cucumber cultivars to NaCl stress. Soil Science and Plant Nutrition. 54(3): 400-407.
  • Xue, Y.W., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A.R. & Ro, K.S. (2012). Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chemical Engineering Journal 200: 673-680.

The Effect of Biochar Applications at Different Doses on Soybean Seedlings Grown in Salty Conditions

Yıl 2023, Cilt: 4 Sayı: 1, 38 - 42, 30.06.2023
https://doi.org/10.51801/turkjrfs.1281604

Öz

In this research, the effects of biochar application at different doses on the mineral element content of soybean seedlings under salt stress were investigated under greenhouse circumstances. In the study, leaf and root some mineral contents were investigated. According to the data obtained from the study, it was stated that while the leaf and root plant nutrient content of soybean seedlings decreased in salty conditions in general, the applied biochar increased the leaf and root plant nutrient content. This positive effect of biochar treatments on enhancing mineral element content was dose dependent. In conclude, biochar can be used as an amendment for increasing plant nutrient use efficiency of plants under saline conditions.

Kaynakça

  • Abd El-Mageed, T.A., Rady, M.M., Taha, R.S., Abd El Azeam, S., Simpson, C.R. & Semida, W.M. (2020). Effects of integrated use of residual sulfur-enhanced biochar with effective microorganisms on soil properties. plant growth and short-term productivity of Capsicum annuum under salt stress. Sci. Hortic. 261 s.
  • Alekel, L., Hasler, C.M., Juma, S., Drum, B.W. & Kukreja, S.C. (1998). Role of soybean protein with normal or reduced isoflavone content in reversing boneloss induced by ovarian hormone deficiency in rats. American Journal of Clinical Nutrition 68: 1358-1363.
  • Ashraf, M. & Wu, L. (1994). Breeding for salinity tolerance in plants. Critical Reviews in Plant Sciences. 13(1): 17-42. Bressan, R.A. (2008). ‘‘Stress Physiology’’. Editors: Taiz. L. and Zeiger. E., Translation Editor: Türkan D., Palme Publishing. Ankara, 591-620 s.
  • Chaganti, V.N., Crohn, D.M. & Šimůnek, J. (2015). Leaching and reclamation of a biochar and compost amended saline–sodic soil with moderate SAR reclaimed water Agr. Water Mgt. 158 s.
  • Demir I. & Mazi K. 2008. Effect of salt and osmotic stresses on the germination of pepper seeds of different maturation stages. Braz. Arch. Biol. Technol. 51: 897-902.
  • Drake, J.A., Cavagnaro, T.R., Cunningham, S.C., Jackson, W.R. & Patti, A.F. (2016). Does biochar improve establishment of tree seedlings in saline sodic soils? L. Degrad. Dev., 27: 52–59.
  • Ekinci, M., Turan, M. & Yildirim, E. (2022). Biochar mitigates salt stress by regulating nutrient uptake and antioxidant activity. alleviating the oxidative stress and abscisic acid content in cabbage seedlings. Turk J Agric For. 46: 28-37.
  • Galvan-Ampudia, C.S. & Testerink, C. (2011). Salt stress signals shape the plant root. Curr. Opin. Plant Biol. 14: 296–302.
  • Graham, P.H. & Vance, C.P. (2003). Legumes: Importance and constraints to greater use. Plant Physiology. 131: 872-877.
  • Gorham, J., Mcdonnel, E. & Wyn Jones, R.G. (1985). Salt Tolerance in the Triticeae: Growth and Solute Accumulation in Leaves of Thinopyrum bessa rabicum. J. Exp. Bot. 36: 1021-1031.
  • Guo, R., Yang, Z., Li, F., Yan, C., Zhong, X., Liu, Q., Xia, X., Li, H. & Zhao, L. (2015). Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biology, 15: 170 s.
  • Gungor, Y. & Eroz, Z. (1994). Drainage and Land Reclamation. Ankara University, Faculty of Agriculture Publications, No:1341, Ankara. 232 s.
  • Kanber, R., Cullu, M.A., Kendirli, B., Antepli, S. & Yilmaz, N. (2005). Irrigation. Drainage and Salinity. Turkey Agricultural Engineering VI. Technical Congress. Ankara. 213-251 s.
  • Karabay, U. (2017). Mitigating Potential of Biochar Application on The Negative Impact of Soil Salinity on Plant. Master Thesis. University of Ege, Institute of Science. Department of Biology, Izmir.
  • Kul, R., Ekinci, M., Turan, M. & Yildirim, E. (2021). Impact of Biochar on Growth. Physiology and Antioxidant Activity of Common Bean Subjected to Salinity Stress. Global Journal of Botanical Science. 9: 8-13.
  • Kusvuran, Ş., Yasar, F., Abak, K. & Ellialtioglu, Ş. (2008). Changes in lipid peroxidation. chlorophyll and ion amount in some genotypes of salt tolerant and sensitive Cucumis sp. grown under salt stress. Yuzuncu Yil University. Faculty of Agriculture. Journal of Agricultural Sciences (J. Agric. Sci.). 18(1): 13-20.
  • Liu, S., Zhang, M., Feng, F. & Tian, Z. (2020). Toward a “green revolution” for soybean. Molecular Plant. 3: 688-697.
  • Lorenz, K. & Lal, R. (2014). Soil Organic Carbon Sequestration in Agroforestry Systems. A Review. Agronomy for Sustainable Development. 34: 443-454.
  • Lucas, E.A., Khalil, D.A., Daggy, B.P. & Arjmandi, B.H. (2001). Ethanol-extracted soy protein isolate does not modulate serum cholesterol in golden Syrian hamsters: A model of postmenopausal hypercholesterolemia. Journal of Nutrition 131: 211-214.
  • Mugdal, V., Madaan, N. & Mudgal, A. (2010). Biochemical mechanisms of salt tolerance in plants: a review. International Journal of Botany. 6(2): 136-143.
  • Parida, A.K. & Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety. 60: 324- 349.
  • Rizwan, M., Ali, S., Qayyum, M.F., Ibrahim, M., Zia-ur-Rehman, M., Abbas, T. & Ok, Y.S. (2016). Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: A critical review. Environ. Sci. Pollut. Res. 23: 2230–2248.
  • Rouphael, Y., Cardarelli, M., Rea, E. & Colla, G. (2012). Improving melon and cucumber photosynthetic activity, mineral composition. and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. Photosynthetica. 50(2): 180-188.
  • Wu, Y., Xu, G., Shao & H.B. (2014). Furfural and its biochar improve the general properties of a saline soil. Solid Earth 5: 665–671.
  • Yildirim, E., Turan, M. & Guvenc, I. (2008). Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of Plant Nutrition. 31(3): 593-61.
  • Zhu, J., Bie, Z. & Li, Y. (2008). Physiological and growth responses of two different saltsensitive cucumber cultivars to NaCl stress. Soil Science and Plant Nutrition. 54(3): 400-407.
  • Xue, Y.W., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A.R. & Ro, K.S. (2012). Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chemical Engineering Journal 200: 673-680.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Agronomi
Bölüm Research Articles
Yazarlar

Sedat Severoğlu 0000-0002-9164-6557

Ertan Yıldırım 0000-0003-3369-0645

Melek Ekinci 0000-0002-7604-3803

Mehmet Kerim Güllap 0000-0002-6348-4335

Tuba Karabacak 0000-0001-5041-4891

Abdullah Yazıcı 0000-0003-0362-2799

Halit Aktaş 0000-0001-6581-5022

Nilay Çerit 0000-0003-0989-1447

Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 12 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 4 Sayı: 1

Kaynak Göster

APA Severoğlu, S., Yıldırım, E., Ekinci, M., Güllap, M. K., vd. (2023). The Effect of Biochar Applications at Different Doses on Soybean Seedlings Grown in Salty Conditions. Turkish Journal of Range and Forage Science, 4(1), 38-42. https://doi.org/10.51801/turkjrfs.1281604
AMA Severoğlu S, Yıldırım E, Ekinci M, Güllap MK, Karabacak T, Yazıcı A, Aktaş H, Çerit N. The Effect of Biochar Applications at Different Doses on Soybean Seedlings Grown in Salty Conditions. Turk.J.R.For.Sci. Haziran 2023;4(1):38-42. doi:10.51801/turkjrfs.1281604
Chicago Severoğlu, Sedat, Ertan Yıldırım, Melek Ekinci, Mehmet Kerim Güllap, Tuba Karabacak, Abdullah Yazıcı, Halit Aktaş, ve Nilay Çerit. “The Effect of Biochar Applications at Different Doses on Soybean Seedlings Grown in Salty Conditions”. Turkish Journal of Range and Forage Science 4, sy. 1 (Haziran 2023): 38-42. https://doi.org/10.51801/turkjrfs.1281604.
EndNote Severoğlu S, Yıldırım E, Ekinci M, Güllap MK, Karabacak T, Yazıcı A, Aktaş H, Çerit N (01 Haziran 2023) The Effect of Biochar Applications at Different Doses on Soybean Seedlings Grown in Salty Conditions. Turkish Journal of Range and Forage Science 4 1 38–42.
IEEE S. Severoğlu, E. Yıldırım, M. Ekinci, M. K. Güllap, T. Karabacak, A. Yazıcı, H. Aktaş, ve N. Çerit, “The Effect of Biochar Applications at Different Doses on Soybean Seedlings Grown in Salty Conditions”, Turk.J.R.For.Sci., c. 4, sy. 1, ss. 38–42, 2023, doi: 10.51801/turkjrfs.1281604.
ISNAD Severoğlu, Sedat vd. “The Effect of Biochar Applications at Different Doses on Soybean Seedlings Grown in Salty Conditions”. Turkish Journal of Range and Forage Science 4/1 (Haziran 2023), 38-42. https://doi.org/10.51801/turkjrfs.1281604.
JAMA Severoğlu S, Yıldırım E, Ekinci M, Güllap MK, Karabacak T, Yazıcı A, Aktaş H, Çerit N. The Effect of Biochar Applications at Different Doses on Soybean Seedlings Grown in Salty Conditions. Turk.J.R.For.Sci. 2023;4:38–42.
MLA Severoğlu, Sedat vd. “The Effect of Biochar Applications at Different Doses on Soybean Seedlings Grown in Salty Conditions”. Turkish Journal of Range and Forage Science, c. 4, sy. 1, 2023, ss. 38-42, doi:10.51801/turkjrfs.1281604.
Vancouver Severoğlu S, Yıldırım E, Ekinci M, Güllap MK, Karabacak T, Yazıcı A, Aktaş H, Çerit N. The Effect of Biochar Applications at Different Doses on Soybean Seedlings Grown in Salty Conditions. Turk.J.R.For.Sci. 2023;4(1):38-42.

     TR_Dizin_logo.png?version=1&modificationDate=1614345672000&api=v2  asos-index.png          logo.png    Crossref_Logo_Stacked_RGB_SMALL.png 1?ui=2&ik=a4058937f1&attid=0.3&permmsgid=msg-f:1749487628794806097&th=18476dbaad413f51&view=fimg&fur=ip&sz=s0-l75-ft&attbid=ANGjdJ9QGll0LXXhrpfkwxITnNQPMSCkjzPYtGlKAQeCi78zqusMPzJmW9Os0HX2VeTA31eRfyXCwOmU97TIQBEjf3rU8o_BbruviQKEDDHIC8oINFfNbOJLDrJPxfs&disp=emb




Turkish Journal of Range and Forage Science is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.