Derleme
BibTex RIS Kaynak Göster

Phytoremediation with Endophytes in Heavy Metal Contaminated Soils

Yıl 2025, Cilt: 12 Sayı: 1, 101 - 109, 28.03.2025
https://doi.org/10.19159/tutad.1581805

Öz

Phytoremediation is based on the natural ability of plants to remove chemicals from water, soil and air and is much more economical to implement than conventional decontamination technologies. Endophytes, which enhance the effect of phytoremediation, are microorganisms obtained from healthy plant tissues, do not show any disease symptoms in the host and live symbiotically with the plant. Recent studies have shown that many endophytes are metal resistant and can be successfully used in phytoremediation to enhance plant growth and/or decompose organic matter. While plants on their own have the potential to accumulate metals such as uranium and lead in their roots and shoots, bacterial consortia further enhance metal uptake capacity. Many siderophore-producing endophytes have been reported from various plants and have been reported by researchers to enhance plant growth in poor environments. The binding of siderophore to a metal has been found to increase the soluble metal concentration. Endophytes can also help with the bioremediation of greenhouse gases such as methane and carbon dioxide. It has been reported that the endophytic fungi such as Neotyphodium coenophialum and Neotyphodium uncinatum, were successive to reducing of heavy metal pollution. The aim of this review is to summarize the studies and provide information about the control of the soil by endophytes, which is the basic element of plant production due to environmental pollution, which is one of the most important problems of today, from substances such as heavy metals that are highly persistent and limit the sustainable environment, within a new perspective called phytoremediation.

Kaynakça

  • Ahsan, M.T., Najam-Ul-Haq, M., Idrees, M., Ullah, I., Afzal, M., 2017. Bacterial endophytes enhance phytostabilization in soils contaminated with uranium and lead. International Journal of Phytoremediation, 19: 937-946.
  • Arachevaleta, M., Bacon, C.W., Hoveland, C.S., Radcliffe, D.E., 1989. Effect of the tall fescue endophyte on plant response to environmental stress. Agronomy Journal, 81: 83-90.
  • Ashraf, S.S., Ali, Q., Zahir, Z.A., Ashraf, S.S., Asghar, H.N., 2019. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174: 714-727.
  • Barzanti, R., Ozino, F., Bazzicalupo, M., Gabbrielli, R., Galardi, F., Gonnelli, C., Mengoni, A., 2007. Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microbial Ecology, 53: 306-316.
  • Berti, W.R., Cunningham, S.D., 2000. Phytostabilization of metals, phytoremediation of toxic metals. In: I. Raskin and B.D. Ensley (Eds.), Using Plants to Clean-up the Environment, New York, Wiley, pp.71-88.
  • Chandra, R., Saxena, G., Kumar, V., 2015. Phytoremediation of environmental pollutants: An eco-sustainable green technology to environmental management. In: R. Chandra (Ed.), Advances in Biodegradation and Bioremediation of Industrial Waste, Boca Raton, CRC Press, pp. 1-30.
  • Chen, L., Luo, S., Xiao, X., Guo, H., Chen, J., Wan, Y., Li, B., Xu, T., Xi, Q., Rao, C., Liu, C., Zeng, G., 2010. Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Applied Soil Ecology, 46(3): 383-389.
  • Chen, Y., Peng, Y., Dai, C., Ju, Q., 2011. Biodegradation of 4-hydroxybenzoic acid by Phomopsis liquidambari. Applied Soil Ecology, 51: 102-110.
  • Chlebek, D., Hupert-Kocurek, K., 2019. Endophytic bacteria in the phytodegradation of persistent organic pollutants. Advancements of Microbiology, 58: 70-79.
  • Dalvi, A.A., Bhalerao, S.A., 2013. Response of plants towards heavy metal toxicity: An overview of avoidance, tolerance and uptake mechanism. Annual Plant Science, 2(9): 362-368.
  • Durand, A., Leglize, P., Benizri, E., 2021. Are endophytes essential partners for plants and what are the prospects for metal phytoremediation? Plant Soil, 460: 1-30.
  • Feng, N.X., Yu, J., Zhao, H.M., Cheng, Y.T., Mo, C.H., Cai, Q.Y., Li, Y.W., Li, H., Wong, M.H., 2017. Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships. Science of the Total Environment, 583: 352-368.
  • Funk, C.R., White, R.H., Breen, J., 1993. Importance of Acremonium endophytes in turfgrass breeding and management. Agriculture Ecosystem Environment, 44(1-4): 215-232.
  • Gaiero, J.R., McCall, C.A., Thompson, K.A., Day, N.J., Best, A.S., Dunfield, K.E., 2013. Inside the root microbiome: bacterial root endophytes and plant growth promotion. American Journal of Botany, 100(9): 1738-1750.
  • Gerhardt, K.E., Gerwing, P.D., Greenberg, B.M., 2017. Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Science, 256: 170-185.
  • Germaine, K.J., Keogh, E., Ryan, D., Dowling, D.N., 2009. Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. Federation of European Microbiological Societies Microbiology Letters, 296(2): 226-234.
  • Glick, B.R., 2003. Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 21(5): 383-393.
  • Glick, B.R., 2010. Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, 28(3): 367-374. Gray, J.S., 2002. Biomagnification in marine systems: The perspective of an ecologist. Marine Pollution Bulletin, 45(1-12): 46-52.
  • Guarino, F., Miranda, A., Castiglione, S., Cicatelli, A., 2020. Arsenic phytovolatilization and epigenetic modifications in arundo donax l. assisted by a PGPR consortium. Chemosphere, 251: 126310.
  • Hall, J., 2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366): 1-11.
  • Hamilton, C.E., Bauerle, T.L., 2012. A new currency for mutualism? Fungal endophytes alter antioxidant activity in hosts responding to drought. Fungal Diversity, 54: 39-49.
  • Hamilton, C.E., Gundel, P.E., Helander, M., Saikkonen, K., 2012. Endophytic mediation of reactive oxygen species and antioxidant activity in plants: A review. Fungal Diversity, 54: 1-10.
  • Hasan, M.M., Uddin, M.N., Ara-Sharmeen, F.I, Alharby, H., Alzahrani, Y., Hakeem, K.R., 2019. Assisting phytoremediation of heavy metals using chemical amendments. Plants, 8(9): 295.
  • Ho, Y.-N., Shih, C.-H., Hsiao, S.-C., Huang, C.-C., 2009. EN-P43 A novel endophytic bacterium, Achromobacter xylosoxidans, helps plants against pollutant stress and improves phytoremediation (Section VI Environmental Biotechnology). Journal of Bioscience and Bioengineering, 108(1): S94.
  • Huo, W., Zhuang, C., Cao, Y., Pu, M., Yao, H., Lou, L., Cai, Q., 2012. Paclobutrazol and plant-growth promoting bacterial endophyte Pantoea sp. enhance copper tolerance of guinea grass (Panicum maximum) in hydroponic culture. Acta Physiologiae Plantarum, 34: 139-150.
  • Idris, R., Trifonova, R., Puschenreiter, M., Wenzel, W.W., Sessitsch, A., 2004. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Applied and Environmental Microbiology, 70(5): 2667-2677.
  • Jia, Y., Huang, H., Sun, G.-X., Zhao, F.-J., Zhu, Y.-G., 2012. Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil. Environmental Science & Technology Journal, 46(15): 8090-8096.
  • Kapahi, M., Sachdeva, S., 2019. Bioremediation options for heavy metal pollution. Journal of Health and Pollution, 9(24): 191203.
  • Khan, Z., Dotty, S., 2011. Endophyte-assisted phytoremediation. Current Topics in Plant Biology, 12: 97-105.
  • Kristin, A., Miranda, H., 2013. The root microbiota-a fingerprint in the soil? Plant Soil, 370: 671-686.
  • Latch, G.C.M., 1993. Physiological interactions of endophytic fungi and their hosts. Biotic stress tolerance imparted to grasses by endophytes. Agriculture, Ecosystems and Enviroment, 44(1-4): 143-156.
  • LeDuc, D.L., Abdel-Samie, M., Montes-Bayon, M., Wenton, L.M., 2006. Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environmental Pollution, 144(1): 70-76.
  • Li, H.-Y., Wei, D.-Q., Shen, M., Zhou, Z.-P., 2012. Endophytes and their role in phytoremediation. Fungal Diversity, 54: 11-18.
  • Liu, L., Quan, S., Li, L., Lei, G., Li, S., Gong, T., Zhang, Z., Hu, Y., Yang, W., 2024. Endophytic bacteria improve bio- and phytoremediation of heavy metals. Microorganisms, 12(11): 2137.
  • Lodewyckx, C., Taghavi, S., Mergeay, M., Vangronsveld, J., Clijsters, H., Lelie, D., 2001. The effect of recombinant heavy metal-resistant endophytic bacteria on heavy metal uptake by their host plant. International Journal of Phytoremediation, 3(2): 173-187.
  • Luo, S., Chen, L., Chen, J., Xiao, X., Xu, T., Wan, Y., Rao, C., Liu, C., Liu, Y., Lai, C., Zeng, G., 2011. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere, 85(7): 1130-1138.
  • Ma, Y., Prasad, M.N.V., Rajkumar, M., Freitas, H.J.B.A., 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29(2): 248-258.
  • Madhaiyan, M., Poonguzhali, S., Tongmin, S., 2007. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemeosphere, 69(2): 177-346.
  • Marques, A.P., Rangel, A.O., Castro, P.M., 2009. Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology, 39(8): 622-654.
  • Mastretta, C., Taghavi, S., Lelie, D., Mengoni, A., Galardi, F., Gonnelli, C., Barac, T., Boulet, J., Weyens, N., Vangronsveld, J., 2009. Endophytic bacteria from seeds of Nicotiana tabacum can reduce Cd phytotoxicity. International Journal of Phytoremediation, 11(3): 251-267.
  • Miethke, M., Marahiel, M.A., 2007. Siderophore-based iron acquisition and pathogen control. Microbiology and Molecular Biology Reviews, 71(3): 413-451.
  • Özbolat, G., Tuli, A., 2016. Ağır metal toksisitesinin insan sağlığına etkileri. Arşiv Kaynak Tarama Dergisi, 25(4): 502-521.
  • Öztürk, L., Karanlık, S., Özkutlu, F., Çakmak, İ., Kochian, L.V., 2003. Shoot biomass and Zinc/Cadmium uptake for hyperaccumulator and non-accumulator Thlaspi species in response to growth on a Zinc-deficient calcareous soil. Plant Science, 164(6): 1095-1101.
  • Pawlik, M., Płociniczak, T., Thijs, S., Pintelon, I., Vangronsveld, J., Piotrowska-Seget, Z., 2020. Comparison of two inoculation methods of endophytic bacteria to enhance phytodegradation efficacy of an aged petroleum hydrocarbons polluted soil. Agronomy, 10(8): 1196.
  • Rajkumar, M., Ae, N., Prasad, M.N.V., Freitas, H., 2010. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnology, 28(3): 142-149.
  • Rajkumar, M., Prasad, M.N.V., Swaminathan, S., Freitas, H., 2013. Climate change driven plant-metal-microbe interactions. Environment International, 53: 74-86.
  • Read, D.J., Perez-Moreno, J., 2003. Mycorrhizas and nutrient cycling in ecosystems-A journey towards relevance? New Phytologist, 157(3): 475-492.
  • Rizzi, L., Petruzzelli, G., Poggio, G., Vigna Guidi, G., 2004. Soil physical changes and plant vailability of Zn and Pb in a treatability test of phytostabilization. Chemosphere, 57(9): 1039-1046.
  • Salt, D.E., Smith, R.D., Raskin, I., 1998. Phytoremediation. Annual Review of Plant Biology, 49(1): 643-668.
  • Shahzad, A., Aslam, U., Ferdous, S., Qin, M., Siddique, A., Billah, M., Naeem, M., Mahmood, Z., Kayani, S., 2024. Combined effect of endophytic Bacillus mycoides and rock phosphate on the amelioration of heavy metal stress in wheat plants. BMC Plant Biology, 24(1): 125.
  • Sheng, A.-F., Xia, J.-J., Jiang, C.-Y., He, L.-Y., Qian, M., 2008. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental Pollution, 156(3): 1164-1170.
  • Shin, M., Shim, J., You, Y., Myung, H., Bang, K., Cho, M., Kamala-Kannan, S., Oh, B., 2011. Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. Journal of Hazardous Materials, 199: 314-320.
  • Soleimani, M., Afyuni, M., Hajabbasi, M.A., Nourbakhsh, F., Sabzalian, M.R., Christensen, J.H., 2010. Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere, 81(9): 1084-1090.
  • Suman, J., Uhlik, O., Viktorova, J., Macek, T., 2018. Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment? Frontiers in Plant Science, 9: 1476.
  • Thakur, S., Singh, L., Wahid, Z.A., Siddiqui, M.F., Atnaw, S.M., Din, M.F.M., 2016. Plant-driven removal of heavy metals from soil: Uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environmental Monitoring and Assessment, 188: 1-11.
  • Weyens, N., Truyens, S., Dupae, J., Newman, L., Taghavi, S., Lelie, D., Carleer, R., Vangronsveld, J., 2010. Potential of the TCE degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environmental Pollution, 158(9): 2915-2919.
  • Weyens, N., Truyens, S., Saenen, E., Boulet, J., Dupae, J., Taghavi, S., Lelie, D., Carleer, R., Vangronsveld, J., 2011. Endophytes and their potential to deal with co-contamination of organic contaminants (toluene) and toxic metals (nickel) during phytoremediation. International Journal of Phytoremediation, 13(3): 244-255.
  • Wuana, R.A., Okieimen, F.E., 2011. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices, Article ID 402647.
  • Yousaf, S., Andria, V., Reichenauer, T.G., Smalla, K., Sessitsch, A., 2010. Hylogenetic and functional diversity of alkane degrading bacteria associate with Italian ryegrass (Lolium multiflorum) and birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. Journal of Hazardous Materials, 184(1-3): 523-532.
  • Zamani, N., Sabzalian, M.R., Khoshgoftarmanesh, A., Afyuni, M., 2015. Neotyphodium endophyte changes phytoextraction of zinc in Festuca arundinacea and Lolium perenne. International Journal of Phytoremediation, 17(5): 456-463.
  • Zhang, Y., He, L., Chen, Z., Zhang, W., Wang, Q., Qian, M., Sheng, X., 2011. Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. Journal of Hazardous Materials, 186(2-3): 1720-1725.

Ağır Metallerle Bulaşık Topraklarda Endofitlerle Fitoremediasyon

Yıl 2025, Cilt: 12 Sayı: 1, 101 - 109, 28.03.2025
https://doi.org/10.19159/tutad.1581805

Öz

Fitoremediasyon, bitkilerin; sudan, topraktan ve havadan kimyasalları çıkarma konusundaki doğal yeteneğine dayanmakta olup, uygulanması geleneksel arındırma teknolojilerinden çok daha ekonomiktir. Fitoremidasyonun etkisini artıran endofitler ise sağlıklı bitki dokularından elde edilen, konukçuda herhangi bir hastalık belirtisi göstermeyen ve bitki ile simbiyotik olarak yaşayan mikroorganizmalardır. Son zamanlarda yapılan çalışmalar birçok endofitin metale dirençli olduğunu ve bitki büyümesini arttırmak ve/veya organik maddeleri ayrıştırmak için fitoremediasyonda başarıyla kullanılabildiğini göstermiştir. Bitkiler kendi başlarına kök ve sürgünlerinde uranyum ve kurşun gibi metalleri biriktirme potansiyeli gösterse de endofitik bakteri konsorsiyumları metal alım kapasitesini daha da artırmaktadır. Çeşitli bitkilerden birçok siderofor üreten endofit varlığı rapor edilmiş; bunların, fakir ortamlarda bitki büyümesini arttırdığı bildirilmiştir. Sideroforun bir metale bağlanmasının, çözünebilir metal konsantrasyonunu arttırdığı belirlenmiştir. Ayrıca endofitler, metan ve karbondioksit gibi sera gazlarının biyoremediasyonuna da yardımcı olabilmektedir. Endofitik funguslardan özellikle Neotyphodium coenophialum ve Neotyphodium uncinatum bitkilerin rizosferinde ağır metal kirliliğine karşı başarı gösterdiği belirtilmiştir. Bu derlemenin amacı, günümüzün en önemli problemlerinden olan çevresel kirlilik nedeniyle bitkisel üretimin temel unsuru olan toprağın ağır metaller gibi kalıcılığı yüksek ve sürdürülebilir çevreyi sınırlandıran maddelerden fiteromediasyon olarak isimlendirilen yeni bir bakış açısı içinde özellikle endofit mikroorganizmalar marifetiyle kontrol edilebilmesine yönelik çalışmaları özetlemek ve bilgiler vermektir.

Kaynakça

  • Ahsan, M.T., Najam-Ul-Haq, M., Idrees, M., Ullah, I., Afzal, M., 2017. Bacterial endophytes enhance phytostabilization in soils contaminated with uranium and lead. International Journal of Phytoremediation, 19: 937-946.
  • Arachevaleta, M., Bacon, C.W., Hoveland, C.S., Radcliffe, D.E., 1989. Effect of the tall fescue endophyte on plant response to environmental stress. Agronomy Journal, 81: 83-90.
  • Ashraf, S.S., Ali, Q., Zahir, Z.A., Ashraf, S.S., Asghar, H.N., 2019. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174: 714-727.
  • Barzanti, R., Ozino, F., Bazzicalupo, M., Gabbrielli, R., Galardi, F., Gonnelli, C., Mengoni, A., 2007. Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microbial Ecology, 53: 306-316.
  • Berti, W.R., Cunningham, S.D., 2000. Phytostabilization of metals, phytoremediation of toxic metals. In: I. Raskin and B.D. Ensley (Eds.), Using Plants to Clean-up the Environment, New York, Wiley, pp.71-88.
  • Chandra, R., Saxena, G., Kumar, V., 2015. Phytoremediation of environmental pollutants: An eco-sustainable green technology to environmental management. In: R. Chandra (Ed.), Advances in Biodegradation and Bioremediation of Industrial Waste, Boca Raton, CRC Press, pp. 1-30.
  • Chen, L., Luo, S., Xiao, X., Guo, H., Chen, J., Wan, Y., Li, B., Xu, T., Xi, Q., Rao, C., Liu, C., Zeng, G., 2010. Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Applied Soil Ecology, 46(3): 383-389.
  • Chen, Y., Peng, Y., Dai, C., Ju, Q., 2011. Biodegradation of 4-hydroxybenzoic acid by Phomopsis liquidambari. Applied Soil Ecology, 51: 102-110.
  • Chlebek, D., Hupert-Kocurek, K., 2019. Endophytic bacteria in the phytodegradation of persistent organic pollutants. Advancements of Microbiology, 58: 70-79.
  • Dalvi, A.A., Bhalerao, S.A., 2013. Response of plants towards heavy metal toxicity: An overview of avoidance, tolerance and uptake mechanism. Annual Plant Science, 2(9): 362-368.
  • Durand, A., Leglize, P., Benizri, E., 2021. Are endophytes essential partners for plants and what are the prospects for metal phytoremediation? Plant Soil, 460: 1-30.
  • Feng, N.X., Yu, J., Zhao, H.M., Cheng, Y.T., Mo, C.H., Cai, Q.Y., Li, Y.W., Li, H., Wong, M.H., 2017. Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships. Science of the Total Environment, 583: 352-368.
  • Funk, C.R., White, R.H., Breen, J., 1993. Importance of Acremonium endophytes in turfgrass breeding and management. Agriculture Ecosystem Environment, 44(1-4): 215-232.
  • Gaiero, J.R., McCall, C.A., Thompson, K.A., Day, N.J., Best, A.S., Dunfield, K.E., 2013. Inside the root microbiome: bacterial root endophytes and plant growth promotion. American Journal of Botany, 100(9): 1738-1750.
  • Gerhardt, K.E., Gerwing, P.D., Greenberg, B.M., 2017. Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Science, 256: 170-185.
  • Germaine, K.J., Keogh, E., Ryan, D., Dowling, D.N., 2009. Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. Federation of European Microbiological Societies Microbiology Letters, 296(2): 226-234.
  • Glick, B.R., 2003. Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 21(5): 383-393.
  • Glick, B.R., 2010. Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, 28(3): 367-374. Gray, J.S., 2002. Biomagnification in marine systems: The perspective of an ecologist. Marine Pollution Bulletin, 45(1-12): 46-52.
  • Guarino, F., Miranda, A., Castiglione, S., Cicatelli, A., 2020. Arsenic phytovolatilization and epigenetic modifications in arundo donax l. assisted by a PGPR consortium. Chemosphere, 251: 126310.
  • Hall, J., 2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366): 1-11.
  • Hamilton, C.E., Bauerle, T.L., 2012. A new currency for mutualism? Fungal endophytes alter antioxidant activity in hosts responding to drought. Fungal Diversity, 54: 39-49.
  • Hamilton, C.E., Gundel, P.E., Helander, M., Saikkonen, K., 2012. Endophytic mediation of reactive oxygen species and antioxidant activity in plants: A review. Fungal Diversity, 54: 1-10.
  • Hasan, M.M., Uddin, M.N., Ara-Sharmeen, F.I, Alharby, H., Alzahrani, Y., Hakeem, K.R., 2019. Assisting phytoremediation of heavy metals using chemical amendments. Plants, 8(9): 295.
  • Ho, Y.-N., Shih, C.-H., Hsiao, S.-C., Huang, C.-C., 2009. EN-P43 A novel endophytic bacterium, Achromobacter xylosoxidans, helps plants against pollutant stress and improves phytoremediation (Section VI Environmental Biotechnology). Journal of Bioscience and Bioengineering, 108(1): S94.
  • Huo, W., Zhuang, C., Cao, Y., Pu, M., Yao, H., Lou, L., Cai, Q., 2012. Paclobutrazol and plant-growth promoting bacterial endophyte Pantoea sp. enhance copper tolerance of guinea grass (Panicum maximum) in hydroponic culture. Acta Physiologiae Plantarum, 34: 139-150.
  • Idris, R., Trifonova, R., Puschenreiter, M., Wenzel, W.W., Sessitsch, A., 2004. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Applied and Environmental Microbiology, 70(5): 2667-2677.
  • Jia, Y., Huang, H., Sun, G.-X., Zhao, F.-J., Zhu, Y.-G., 2012. Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil. Environmental Science & Technology Journal, 46(15): 8090-8096.
  • Kapahi, M., Sachdeva, S., 2019. Bioremediation options for heavy metal pollution. Journal of Health and Pollution, 9(24): 191203.
  • Khan, Z., Dotty, S., 2011. Endophyte-assisted phytoremediation. Current Topics in Plant Biology, 12: 97-105.
  • Kristin, A., Miranda, H., 2013. The root microbiota-a fingerprint in the soil? Plant Soil, 370: 671-686.
  • Latch, G.C.M., 1993. Physiological interactions of endophytic fungi and their hosts. Biotic stress tolerance imparted to grasses by endophytes. Agriculture, Ecosystems and Enviroment, 44(1-4): 143-156.
  • LeDuc, D.L., Abdel-Samie, M., Montes-Bayon, M., Wenton, L.M., 2006. Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environmental Pollution, 144(1): 70-76.
  • Li, H.-Y., Wei, D.-Q., Shen, M., Zhou, Z.-P., 2012. Endophytes and their role in phytoremediation. Fungal Diversity, 54: 11-18.
  • Liu, L., Quan, S., Li, L., Lei, G., Li, S., Gong, T., Zhang, Z., Hu, Y., Yang, W., 2024. Endophytic bacteria improve bio- and phytoremediation of heavy metals. Microorganisms, 12(11): 2137.
  • Lodewyckx, C., Taghavi, S., Mergeay, M., Vangronsveld, J., Clijsters, H., Lelie, D., 2001. The effect of recombinant heavy metal-resistant endophytic bacteria on heavy metal uptake by their host plant. International Journal of Phytoremediation, 3(2): 173-187.
  • Luo, S., Chen, L., Chen, J., Xiao, X., Xu, T., Wan, Y., Rao, C., Liu, C., Liu, Y., Lai, C., Zeng, G., 2011. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere, 85(7): 1130-1138.
  • Ma, Y., Prasad, M.N.V., Rajkumar, M., Freitas, H.J.B.A., 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29(2): 248-258.
  • Madhaiyan, M., Poonguzhali, S., Tongmin, S., 2007. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemeosphere, 69(2): 177-346.
  • Marques, A.P., Rangel, A.O., Castro, P.M., 2009. Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology, 39(8): 622-654.
  • Mastretta, C., Taghavi, S., Lelie, D., Mengoni, A., Galardi, F., Gonnelli, C., Barac, T., Boulet, J., Weyens, N., Vangronsveld, J., 2009. Endophytic bacteria from seeds of Nicotiana tabacum can reduce Cd phytotoxicity. International Journal of Phytoremediation, 11(3): 251-267.
  • Miethke, M., Marahiel, M.A., 2007. Siderophore-based iron acquisition and pathogen control. Microbiology and Molecular Biology Reviews, 71(3): 413-451.
  • Özbolat, G., Tuli, A., 2016. Ağır metal toksisitesinin insan sağlığına etkileri. Arşiv Kaynak Tarama Dergisi, 25(4): 502-521.
  • Öztürk, L., Karanlık, S., Özkutlu, F., Çakmak, İ., Kochian, L.V., 2003. Shoot biomass and Zinc/Cadmium uptake for hyperaccumulator and non-accumulator Thlaspi species in response to growth on a Zinc-deficient calcareous soil. Plant Science, 164(6): 1095-1101.
  • Pawlik, M., Płociniczak, T., Thijs, S., Pintelon, I., Vangronsveld, J., Piotrowska-Seget, Z., 2020. Comparison of two inoculation methods of endophytic bacteria to enhance phytodegradation efficacy of an aged petroleum hydrocarbons polluted soil. Agronomy, 10(8): 1196.
  • Rajkumar, M., Ae, N., Prasad, M.N.V., Freitas, H., 2010. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnology, 28(3): 142-149.
  • Rajkumar, M., Prasad, M.N.V., Swaminathan, S., Freitas, H., 2013. Climate change driven plant-metal-microbe interactions. Environment International, 53: 74-86.
  • Read, D.J., Perez-Moreno, J., 2003. Mycorrhizas and nutrient cycling in ecosystems-A journey towards relevance? New Phytologist, 157(3): 475-492.
  • Rizzi, L., Petruzzelli, G., Poggio, G., Vigna Guidi, G., 2004. Soil physical changes and plant vailability of Zn and Pb in a treatability test of phytostabilization. Chemosphere, 57(9): 1039-1046.
  • Salt, D.E., Smith, R.D., Raskin, I., 1998. Phytoremediation. Annual Review of Plant Biology, 49(1): 643-668.
  • Shahzad, A., Aslam, U., Ferdous, S., Qin, M., Siddique, A., Billah, M., Naeem, M., Mahmood, Z., Kayani, S., 2024. Combined effect of endophytic Bacillus mycoides and rock phosphate on the amelioration of heavy metal stress in wheat plants. BMC Plant Biology, 24(1): 125.
  • Sheng, A.-F., Xia, J.-J., Jiang, C.-Y., He, L.-Y., Qian, M., 2008. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental Pollution, 156(3): 1164-1170.
  • Shin, M., Shim, J., You, Y., Myung, H., Bang, K., Cho, M., Kamala-Kannan, S., Oh, B., 2011. Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. Journal of Hazardous Materials, 199: 314-320.
  • Soleimani, M., Afyuni, M., Hajabbasi, M.A., Nourbakhsh, F., Sabzalian, M.R., Christensen, J.H., 2010. Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere, 81(9): 1084-1090.
  • Suman, J., Uhlik, O., Viktorova, J., Macek, T., 2018. Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment? Frontiers in Plant Science, 9: 1476.
  • Thakur, S., Singh, L., Wahid, Z.A., Siddiqui, M.F., Atnaw, S.M., Din, M.F.M., 2016. Plant-driven removal of heavy metals from soil: Uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environmental Monitoring and Assessment, 188: 1-11.
  • Weyens, N., Truyens, S., Dupae, J., Newman, L., Taghavi, S., Lelie, D., Carleer, R., Vangronsveld, J., 2010. Potential of the TCE degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environmental Pollution, 158(9): 2915-2919.
  • Weyens, N., Truyens, S., Saenen, E., Boulet, J., Dupae, J., Taghavi, S., Lelie, D., Carleer, R., Vangronsveld, J., 2011. Endophytes and their potential to deal with co-contamination of organic contaminants (toluene) and toxic metals (nickel) during phytoremediation. International Journal of Phytoremediation, 13(3): 244-255.
  • Wuana, R.A., Okieimen, F.E., 2011. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices, Article ID 402647.
  • Yousaf, S., Andria, V., Reichenauer, T.G., Smalla, K., Sessitsch, A., 2010. Hylogenetic and functional diversity of alkane degrading bacteria associate with Italian ryegrass (Lolium multiflorum) and birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. Journal of Hazardous Materials, 184(1-3): 523-532.
  • Zamani, N., Sabzalian, M.R., Khoshgoftarmanesh, A., Afyuni, M., 2015. Neotyphodium endophyte changes phytoextraction of zinc in Festuca arundinacea and Lolium perenne. International Journal of Phytoremediation, 17(5): 456-463.
  • Zhang, Y., He, L., Chen, Z., Zhang, W., Wang, Q., Qian, M., Sheng, X., 2011. Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. Journal of Hazardous Materials, 186(2-3): 1720-1725.
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fitopatoloji
Bölüm Derleme / Review
Yazarlar

Utku Tunalı 0000-0001-9037-8581

Bayram Kansu 0000-0001-5663-0528

Berna Tunalı 0000-0003-2798-0777

Yayımlanma Tarihi 28 Mart 2025
Gönderilme Tarihi 10 Kasım 2024
Kabul Tarihi 27 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 1

Kaynak Göster

APA Tunalı, U., Kansu, B., & Tunalı, B. (2025). Ağır Metallerle Bulaşık Topraklarda Endofitlerle Fitoremediasyon. Türkiye Tarımsal Araştırmalar Dergisi, 12(1), 101-109. https://doi.org/10.19159/tutad.1581805
AMA Tunalı U, Kansu B, Tunalı B. Ağır Metallerle Bulaşık Topraklarda Endofitlerle Fitoremediasyon. TÜTAD. Mart 2025;12(1):101-109. doi:10.19159/tutad.1581805
Chicago Tunalı, Utku, Bayram Kansu, ve Berna Tunalı. “Ağır Metallerle Bulaşık Topraklarda Endofitlerle Fitoremediasyon”. Türkiye Tarımsal Araştırmalar Dergisi 12, sy. 1 (Mart 2025): 101-9. https://doi.org/10.19159/tutad.1581805.
EndNote Tunalı U, Kansu B, Tunalı B (01 Mart 2025) Ağır Metallerle Bulaşık Topraklarda Endofitlerle Fitoremediasyon. Türkiye Tarımsal Araştırmalar Dergisi 12 1 101–109.
IEEE U. Tunalı, B. Kansu, ve B. Tunalı, “Ağır Metallerle Bulaşık Topraklarda Endofitlerle Fitoremediasyon”, TÜTAD, c. 12, sy. 1, ss. 101–109, 2025, doi: 10.19159/tutad.1581805.
ISNAD Tunalı, Utku vd. “Ağır Metallerle Bulaşık Topraklarda Endofitlerle Fitoremediasyon”. Türkiye Tarımsal Araştırmalar Dergisi 12/1 (Mart 2025), 101-109. https://doi.org/10.19159/tutad.1581805.
JAMA Tunalı U, Kansu B, Tunalı B. Ağır Metallerle Bulaşık Topraklarda Endofitlerle Fitoremediasyon. TÜTAD. 2025;12:101–109.
MLA Tunalı, Utku vd. “Ağır Metallerle Bulaşık Topraklarda Endofitlerle Fitoremediasyon”. Türkiye Tarımsal Araştırmalar Dergisi, c. 12, sy. 1, 2025, ss. 101-9, doi:10.19159/tutad.1581805.
Vancouver Tunalı U, Kansu B, Tunalı B. Ağır Metallerle Bulaşık Topraklarda Endofitlerle Fitoremediasyon. TÜTAD. 2025;12(1):101-9.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667