Araştırma Makalesi
BibTex RIS Kaynak Göster

On $\psi$-Hilfer fractional differential equation with complex order

Yıl 2018, Cilt: 1 Sayı: 1, 33 - 38, 11.03.2018
https://doi.org/10.32323/ujma.393130

Öz

The objectives of this paper is to investigate some adequate results for the existence of solution to a $\psi$-Hilfer fractional derivatives (HFDEs) involving complex order. Appropriate conditions for the existence of at least one solution are developed by using Schauder fixed point theorem (SFPT) to the consider problem. Moreover, we also investigate the Ulam-Hyers stability for the proposed problem.

Kaynakça

  • [1] R. Hilfer, Applications of fractional Calculus in Physics, World scientific, Singapore, 1999.
  • [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.
  • [3] X.-Jun. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher Limited, Hong Kong, 2011.
  • [4] Jumarie, G. Maximum Entropy, Information Without Probability and Complex Fractals: Classical and Quantum Approach, 112, Springer Science & Business Media 2013.
  • [5] X-Jun Yang, D. Baleanu and H. M. Srivastava, Local Fractional Integral Transforms and Their Applications, Published by Elsevier Ltd (2016).
  • [6] R. W. Ibrahim, Fractional calculus of Multi-objective functions & Multi-agent systems. LAMBERT Academic Publishing, Saarbrcken, Germany 2017.
  • [7] J. Vanterler da C. Sousa, E. Capelas de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul.. In Press, Accepted Manuscript-2018.
  • [8] R.W. Ibrahim, Generalized Ulam-Hyers stability for fractional differential equations.” International Journal of Mathematics 23.05 (2012) 1250056.
  • [9] R.W. Ibrahim, Ulam stability for fractional differential equation in complex domain, Abstract and Applied Analysis. Vol. 2012. Hindawi, 2012.
  • [10] R.W. Ibrahim, Ulam-Hyers stability for Cauchy fractional differential equation in the unit disk, Abstract and Applied Analysis. Vol. 2012. Hindawi, 2012.
  • [11] R.W. Ibrahim and H. A. Jalab, Existence of Ulam stability for iterative fractional differential equations based on fractional entropy. Entropy 17.5 (2015) 3172-3181.
  • [12] D. Vivek, K. Kanagarajan and S. Sivasundaram, Theory and analysis of nonlinear neutral pantograph equations via Hilfer fractional derivative, Nonlinear Stud. 24(3) (2017),699-712.
  • [13] J. Wang and Y. Zhang, Nonlocal initial value problem for differential equations with Hilfer fractional derivative, Appl. Math. Comput. 266 2015, 850-859.
Yıl 2018, Cilt: 1 Sayı: 1, 33 - 38, 11.03.2018
https://doi.org/10.32323/ujma.393130

Öz

Kaynakça

  • [1] R. Hilfer, Applications of fractional Calculus in Physics, World scientific, Singapore, 1999.
  • [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.
  • [3] X.-Jun. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher Limited, Hong Kong, 2011.
  • [4] Jumarie, G. Maximum Entropy, Information Without Probability and Complex Fractals: Classical and Quantum Approach, 112, Springer Science & Business Media 2013.
  • [5] X-Jun Yang, D. Baleanu and H. M. Srivastava, Local Fractional Integral Transforms and Their Applications, Published by Elsevier Ltd (2016).
  • [6] R. W. Ibrahim, Fractional calculus of Multi-objective functions & Multi-agent systems. LAMBERT Academic Publishing, Saarbrcken, Germany 2017.
  • [7] J. Vanterler da C. Sousa, E. Capelas de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul.. In Press, Accepted Manuscript-2018.
  • [8] R.W. Ibrahim, Generalized Ulam-Hyers stability for fractional differential equations.” International Journal of Mathematics 23.05 (2012) 1250056.
  • [9] R.W. Ibrahim, Ulam stability for fractional differential equation in complex domain, Abstract and Applied Analysis. Vol. 2012. Hindawi, 2012.
  • [10] R.W. Ibrahim, Ulam-Hyers stability for Cauchy fractional differential equation in the unit disk, Abstract and Applied Analysis. Vol. 2012. Hindawi, 2012.
  • [11] R.W. Ibrahim and H. A. Jalab, Existence of Ulam stability for iterative fractional differential equations based on fractional entropy. Entropy 17.5 (2015) 3172-3181.
  • [12] D. Vivek, K. Kanagarajan and S. Sivasundaram, Theory and analysis of nonlinear neutral pantograph equations via Hilfer fractional derivative, Nonlinear Stud. 24(3) (2017),699-712.
  • [13] J. Wang and Y. Zhang, Nonlocal initial value problem for differential equations with Hilfer fractional derivative, Appl. Math. Comput. 266 2015, 850-859.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Harikrishnan Sugumaran

Rabha Ibrahim

Kuppusamy Kanagarajan Bu kişi benim

Yayımlanma Tarihi 11 Mart 2018
Gönderilme Tarihi 17 Şubat 2018
Kabul Tarihi 6 Mart 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 1

Kaynak Göster

APA Sugumaran, H., Ibrahim, R., & Kanagarajan, K. (2018). On $\psi$-Hilfer fractional differential equation with complex order. Universal Journal of Mathematics and Applications, 1(1), 33-38. https://doi.org/10.32323/ujma.393130
AMA Sugumaran H, Ibrahim R, Kanagarajan K. On $\psi$-Hilfer fractional differential equation with complex order. Univ. J. Math. Appl. Mart 2018;1(1):33-38. doi:10.32323/ujma.393130
Chicago Sugumaran, Harikrishnan, Rabha Ibrahim, ve Kuppusamy Kanagarajan. “On $\psi$-Hilfer Fractional Differential Equation With Complex Order”. Universal Journal of Mathematics and Applications 1, sy. 1 (Mart 2018): 33-38. https://doi.org/10.32323/ujma.393130.
EndNote Sugumaran H, Ibrahim R, Kanagarajan K (01 Mart 2018) On $\psi$-Hilfer fractional differential equation with complex order. Universal Journal of Mathematics and Applications 1 1 33–38.
IEEE H. Sugumaran, R. Ibrahim, ve K. Kanagarajan, “On $\psi$-Hilfer fractional differential equation with complex order”, Univ. J. Math. Appl., c. 1, sy. 1, ss. 33–38, 2018, doi: 10.32323/ujma.393130.
ISNAD Sugumaran, Harikrishnan vd. “On $\psi$-Hilfer Fractional Differential Equation With Complex Order”. Universal Journal of Mathematics and Applications 1/1 (Mart 2018), 33-38. https://doi.org/10.32323/ujma.393130.
JAMA Sugumaran H, Ibrahim R, Kanagarajan K. On $\psi$-Hilfer fractional differential equation with complex order. Univ. J. Math. Appl. 2018;1:33–38.
MLA Sugumaran, Harikrishnan vd. “On $\psi$-Hilfer Fractional Differential Equation With Complex Order”. Universal Journal of Mathematics and Applications, c. 1, sy. 1, 2018, ss. 33-38, doi:10.32323/ujma.393130.
Vancouver Sugumaran H, Ibrahim R, Kanagarajan K. On $\psi$-Hilfer fractional differential equation with complex order. Univ. J. Math. Appl. 2018;1(1):33-8.

23181

Universal Journal of Mathematics and Applications 

29207 29139 29137 29138 30898 29130  13377

28629  UJMA'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.