In this paper the sequence spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$, $b_{\infty}^{r,s}(p)$ and $b^{r,s}(p)$ which are the generalization of the classical Maddox's paranormed sequence spaces have been introduced and proved that the spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$, $b_{\infty}^{r,s}(p)$ and $b^{r,s}(p)$ are linearly isomorphic to spaces $c_0(p)$, $c(p)$, $\ell_{\infty}(p)$ and $\ell(p)$, respectively. Besides this, the $\alpha-,\beta-$ and $\gamma-$duals of the spaces $b_0^{r,s}(p)$, $b_c^{r,s}(p)$, and $b^{r,s}(p)$ have been computed, their bases have been constructed and some topological properties of these spaces have been studied. Finally, the classes of matrices $(b_0^{r,s}(p) : \mu)$, $(b^{r,s}_c(p): \mu)$ and $(b^{r,s}(p): \mu)$ have been characterized, where $\mu$ is one of the sequence spaces $\ell_\infty,c$ and $c_0$ and derives the other characterizations for the special cases of $\mu$.
Binomial sequence spaces Paranorm Matrix domain Matrix transformations
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 30 Eylül 2018 |
Gönderilme Tarihi | 15 Şubat 2018 |
Kabul Tarihi | 6 Mart 2018 |
Yayımlandığı Sayı | Yıl 2018 Cilt: 1 Sayı: 3 |
Universal Journal of Mathematics and Applications
UJMA'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.