Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 1 Sayı: 3, 166 - 170, 30.09.2018
https://doi.org/10.32323/ujma.434361

Öz

Kaynakça

  • [1] Ali, Ahmad T., Turgut, M.: Some characterizations of slant helices in the Euclidean space En, Hacettepe Journal of Mathematics and Statistics, 39, 327-336, (2010).
  • [2] Breuer, S. and Gottlieb, D.: Explicit characterization of spherical curves, Proc. Am. Math. Soc., 274, 126–127, (1972).
  • [3] Camci, C. Ilarslan, K. Kula, L. and Hacisalihoglu, H.H.: Harmonic cuvature and general helices, Chaos Solitons & Fractals, 40, 2590-2596, (2009).
  • [4] Gluck, H.: Higher curvatures of curves in Euclidean space, Amer. Math. Monthly 73, 699-704, (1966).
  • [5] Hayden, H. A.: On a general helix in a Riemannian n-space, Proc. London Math. Soc. 2, 37-45, (1931).
  • [6] Monterde, J.,: Curves with constant curvature ratios, Bol. Soc. Mat. Mexicana 3a, 13/1, 177–186, (2007).
  • [7] Romero-Fuster, M.C., Sanabria-Codesal, E.: Generalized helices, twistings and flattenings of curves in n-space. Mat. Cont., 17 , 267-280, (1999).
  • [8] Struik, D.J.: Lectures on Classical Differential Geometry, Dover, New-York, (1988).
  • [9] Wong Y.C.,: A global formulation of the condition for a curve to lie in a sphere, Monatsch Math, 67, 363–365, (1963).
  • [10] Wong Y.C.,: On a explicit characterization of spherical curves, Proc. Am. Math. Soc., 34, 239–242, (1972).

General helices that lie on the sphere $S^{2n}$ in Euclidean space $E^{2n+1}$

Yıl 2018, Cilt: 1 Sayı: 3, 166 - 170, 30.09.2018
https://doi.org/10.32323/ujma.434361

Öz

In this work, we give two methods to generate general helices that lie on the sphere  $S^{2n}$ in Euclidean (2n+1)-space $E^{2n+1}$.

Kaynakça

  • [1] Ali, Ahmad T., Turgut, M.: Some characterizations of slant helices in the Euclidean space En, Hacettepe Journal of Mathematics and Statistics, 39, 327-336, (2010).
  • [2] Breuer, S. and Gottlieb, D.: Explicit characterization of spherical curves, Proc. Am. Math. Soc., 274, 126–127, (1972).
  • [3] Camci, C. Ilarslan, K. Kula, L. and Hacisalihoglu, H.H.: Harmonic cuvature and general helices, Chaos Solitons & Fractals, 40, 2590-2596, (2009).
  • [4] Gluck, H.: Higher curvatures of curves in Euclidean space, Amer. Math. Monthly 73, 699-704, (1966).
  • [5] Hayden, H. A.: On a general helix in a Riemannian n-space, Proc. London Math. Soc. 2, 37-45, (1931).
  • [6] Monterde, J.,: Curves with constant curvature ratios, Bol. Soc. Mat. Mexicana 3a, 13/1, 177–186, (2007).
  • [7] Romero-Fuster, M.C., Sanabria-Codesal, E.: Generalized helices, twistings and flattenings of curves in n-space. Mat. Cont., 17 , 267-280, (1999).
  • [8] Struik, D.J.: Lectures on Classical Differential Geometry, Dover, New-York, (1988).
  • [9] Wong Y.C.,: A global formulation of the condition for a curve to lie in a sphere, Monatsch Math, 67, 363–365, (1963).
  • [10] Wong Y.C.,: On a explicit characterization of spherical curves, Proc. Am. Math. Soc., 34, 239–242, (1972).
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Bülent Altunkaya

Levent Kula

Yayımlanma Tarihi 30 Eylül 2018
Gönderilme Tarihi 18 Haziran 2018
Kabul Tarihi 3 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 3

Kaynak Göster

APA Altunkaya, B., & Kula, L. (2018). General helices that lie on the sphere $S^{2n}$ in Euclidean space $E^{2n+1}$. Universal Journal of Mathematics and Applications, 1(3), 166-170. https://doi.org/10.32323/ujma.434361
AMA Altunkaya B, Kula L. General helices that lie on the sphere $S^{2n}$ in Euclidean space $E^{2n+1}$. Univ. J. Math. Appl. Eylül 2018;1(3):166-170. doi:10.32323/ujma.434361
Chicago Altunkaya, Bülent, ve Levent Kula. “General Helices That Lie on the Sphere $S^{2n}$ in Euclidean Space $E^{2n+1}$”. Universal Journal of Mathematics and Applications 1, sy. 3 (Eylül 2018): 166-70. https://doi.org/10.32323/ujma.434361.
EndNote Altunkaya B, Kula L (01 Eylül 2018) General helices that lie on the sphere $S^{2n}$ in Euclidean space $E^{2n+1}$. Universal Journal of Mathematics and Applications 1 3 166–170.
IEEE B. Altunkaya ve L. Kula, “General helices that lie on the sphere $S^{2n}$ in Euclidean space $E^{2n+1}$”, Univ. J. Math. Appl., c. 1, sy. 3, ss. 166–170, 2018, doi: 10.32323/ujma.434361.
ISNAD Altunkaya, Bülent - Kula, Levent. “General Helices That Lie on the Sphere $S^{2n}$ in Euclidean Space $E^{2n+1}$”. Universal Journal of Mathematics and Applications 1/3 (Eylül 2018), 166-170. https://doi.org/10.32323/ujma.434361.
JAMA Altunkaya B, Kula L. General helices that lie on the sphere $S^{2n}$ in Euclidean space $E^{2n+1}$. Univ. J. Math. Appl. 2018;1:166–170.
MLA Altunkaya, Bülent ve Levent Kula. “General Helices That Lie on the Sphere $S^{2n}$ in Euclidean Space $E^{2n+1}$”. Universal Journal of Mathematics and Applications, c. 1, sy. 3, 2018, ss. 166-70, doi:10.32323/ujma.434361.
Vancouver Altunkaya B, Kula L. General helices that lie on the sphere $S^{2n}$ in Euclidean space $E^{2n+1}$. Univ. J. Math. Appl. 2018;1(3):166-70.

23181

Universal Journal of Mathematics and Applications 

29207 29139 29137 29138 30898 29130  13377

28629  UJMA'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.