Araştırma Makalesi
BibTex RIS Kaynak Göster

Some New Cauchy Sequence Spaces

Yıl 2018, Cilt: 1 Sayı: 4, 267 - 272, 20.12.2018
https://doi.org/10.32323/ujma.399587

Öz

In this paper, our goal is to introduce some new Cauchy sequence spaces. These spaces are defined by Cauchy transforms. We shall use notations $C_{\infty }\left( s,t\right) $, $C\left( s,t\right) $ and $C_{0}\left( s,t\right) ~$for these new sequence spaces. We prove that these new sequence spaces $C_{\infty }\left( s,t\right) $, $C\left( s,t\right) $ and $C_{0}\left( s,t\right) ~$ are the $BK-$spaces and isomorphic to the spaces $l_{\infty }$, $c\ $and $c_{0}$, respectively. Besides the bases of these spaces, $\alpha -$, $\beta -\ $and $\gamma -$ duals of these spaces will be given. Finally, the matrix classes $(C\left( s,t\right) :l_{p})$ and $(C\left( s,t\right) :c)$ have been characterized.

Kaynakça

  • [1] B. Choudhary, S. Nanda, Functional analysis with applications, Wiley, New Delhi, 1989.
  • [2] M. Kirişçi, On the Taylor sequence spaces of non-absolute type which include the spaces c0 and c, J. Math. Anal., 6(2) (2015) 22-35.
  • [3] B. Altay, F. Başar, Some Euler sequence spaces of non-absolute type, Ukrain. Math. J., 57(1) (2005), 1–17.
  • [4] B. Altay, F. Başar, M. Mursaleen, On the Euler sequence spaces which include in the spaces lp and l¥, Inform. Sci., 176(10) (2006), 1450–1462.
  • [5] E. Malkowsky, Recent results in the theory of matrix transformations in sequences spaces, Mat. Vesnik, 49 (1997), 187–196.
  • [6] P. N. Ng, P. Y. Lee, Cesaro sequences spaces of non-absolute type, Comment. Math. Prace Mat., 20(2) (1978), 429–433.
  • [7] C. S. Wang, On Nörlund seqence spaces, Tamkang J. Math., 9 (1978), 269-274.
  • [8] M. Candan, Domain of the double sequential band matrix in the spaces of convergent and null sequences, Adv. Dif. Equ., 1 (2014), 163-281.
  • [9] M. Candan, Almost convergence and double sequential band matrix, Acta. Math. Sci., 34B(2) (2014), 354-366.
  • [10] B. Altay, On the space of p-summable difference sequences of order $(1\leq p<\infty )$, Studia Sci. Math. Hungar., 43(4) (2006), 387–402.
  • [11] B. Altay, F. Başar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl., 336(1) (2007), 632–645.
  • [12] C. Aydın,F. Başar, On the new sequence spaces which include the spaces $c_{0}$ and $c$, Hokkaido Math. J., 33(2) (2004), 383–398.
  • [13] F. Başar, Strongly-conservative sequence-to-series matrix transformations, Erc. Uni. Fen Bil. Derg., 5(12) (1989), 888–893.
  • [14] F. Başar, f–conservative matrix sequences, Tamkang J. Math., 22(2) (1991), 205–212.
  • [15] F. Başar, E. Malkowsky, B. Altay, Matrix transformations on the matrix domains of triangles in the spaces of strongly C1-summable and bounded sequences, Publ. Math., 73(1-2) (2008), 193–213.
  • [16] H. Polat, F. Başar, Some Euler spaces of difference sequences of order m, Acta Math. Sci., 27B(2) (2007), 254–266.
  • [17] M. S¸engçnül, F. Başar, Some new Cesaro sequence spaces of non-absolute type which include the spaces c0 and c, Soochow J. Math., 31(1) (2005), 107–119.
  • [18] P. V. Krishna Raja and at all, A cryptosystem based on Hilbert matrix using Cipher block chaining mode, Int. J. Math. Trends Tech., July to Aug Issue 2011.
  • [19] M. Mohammad Tabanjeh, New approach for the inversion of structured matrices via Newton’s iteration, Adv. Linear Algebra Matrix Theory, 5 (2015), 1-15.
  • [20] I. J. Maddox, Elements of functional analysis, Cambridge University Press, Cambridge, 1988.
  • [21] D. J. H. Garling, The $\alpha -$,$~\beta -\ $and $\gamma -$ duality of sequence spaces, Proc. Comb. Phil. Soc., 63 (1967), 963-981.
  • [22] M. Stieglitz, H. Tietz, Matrixtransformationen von folgenraumen eine ergebnisübersict, Math. Z., 154 (1977), 1-16.
  • [23] M. Candan, A new sequence space isomorphic to the space $l(p)$ and compact operators, J. Math. Comput. Sci., 4(2) (2014), 306-334.
Yıl 2018, Cilt: 1 Sayı: 4, 267 - 272, 20.12.2018
https://doi.org/10.32323/ujma.399587

Öz

Kaynakça

  • [1] B. Choudhary, S. Nanda, Functional analysis with applications, Wiley, New Delhi, 1989.
  • [2] M. Kirişçi, On the Taylor sequence spaces of non-absolute type which include the spaces c0 and c, J. Math. Anal., 6(2) (2015) 22-35.
  • [3] B. Altay, F. Başar, Some Euler sequence spaces of non-absolute type, Ukrain. Math. J., 57(1) (2005), 1–17.
  • [4] B. Altay, F. Başar, M. Mursaleen, On the Euler sequence spaces which include in the spaces lp and l¥, Inform. Sci., 176(10) (2006), 1450–1462.
  • [5] E. Malkowsky, Recent results in the theory of matrix transformations in sequences spaces, Mat. Vesnik, 49 (1997), 187–196.
  • [6] P. N. Ng, P. Y. Lee, Cesaro sequences spaces of non-absolute type, Comment. Math. Prace Mat., 20(2) (1978), 429–433.
  • [7] C. S. Wang, On Nörlund seqence spaces, Tamkang J. Math., 9 (1978), 269-274.
  • [8] M. Candan, Domain of the double sequential band matrix in the spaces of convergent and null sequences, Adv. Dif. Equ., 1 (2014), 163-281.
  • [9] M. Candan, Almost convergence and double sequential band matrix, Acta. Math. Sci., 34B(2) (2014), 354-366.
  • [10] B. Altay, On the space of p-summable difference sequences of order $(1\leq p<\infty )$, Studia Sci. Math. Hungar., 43(4) (2006), 387–402.
  • [11] B. Altay, F. Başar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl., 336(1) (2007), 632–645.
  • [12] C. Aydın,F. Başar, On the new sequence spaces which include the spaces $c_{0}$ and $c$, Hokkaido Math. J., 33(2) (2004), 383–398.
  • [13] F. Başar, Strongly-conservative sequence-to-series matrix transformations, Erc. Uni. Fen Bil. Derg., 5(12) (1989), 888–893.
  • [14] F. Başar, f–conservative matrix sequences, Tamkang J. Math., 22(2) (1991), 205–212.
  • [15] F. Başar, E. Malkowsky, B. Altay, Matrix transformations on the matrix domains of triangles in the spaces of strongly C1-summable and bounded sequences, Publ. Math., 73(1-2) (2008), 193–213.
  • [16] H. Polat, F. Başar, Some Euler spaces of difference sequences of order m, Acta Math. Sci., 27B(2) (2007), 254–266.
  • [17] M. S¸engçnül, F. Başar, Some new Cesaro sequence spaces of non-absolute type which include the spaces c0 and c, Soochow J. Math., 31(1) (2005), 107–119.
  • [18] P. V. Krishna Raja and at all, A cryptosystem based on Hilbert matrix using Cipher block chaining mode, Int. J. Math. Trends Tech., July to Aug Issue 2011.
  • [19] M. Mohammad Tabanjeh, New approach for the inversion of structured matrices via Newton’s iteration, Adv. Linear Algebra Matrix Theory, 5 (2015), 1-15.
  • [20] I. J. Maddox, Elements of functional analysis, Cambridge University Press, Cambridge, 1988.
  • [21] D. J. H. Garling, The $\alpha -$,$~\beta -\ $and $\gamma -$ duality of sequence spaces, Proc. Comb. Phil. Soc., 63 (1967), 963-981.
  • [22] M. Stieglitz, H. Tietz, Matrixtransformationen von folgenraumen eine ergebnisübersict, Math. Z., 154 (1977), 1-16.
  • [23] M. Candan, A new sequence space isomorphic to the space $l(p)$ and compact operators, J. Math. Comput. Sci., 4(2) (2014), 306-334.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Harun Polat

Yayımlanma Tarihi 20 Aralık 2018
Gönderilme Tarihi 28 Şubat 2018
Kabul Tarihi 6 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 4

Kaynak Göster

APA Polat, H. (2018). Some New Cauchy Sequence Spaces. Universal Journal of Mathematics and Applications, 1(4), 267-272. https://doi.org/10.32323/ujma.399587
AMA Polat H. Some New Cauchy Sequence Spaces. Univ. J. Math. Appl. Aralık 2018;1(4):267-272. doi:10.32323/ujma.399587
Chicago Polat, Harun. “Some New Cauchy Sequence Spaces”. Universal Journal of Mathematics and Applications 1, sy. 4 (Aralık 2018): 267-72. https://doi.org/10.32323/ujma.399587.
EndNote Polat H (01 Aralık 2018) Some New Cauchy Sequence Spaces. Universal Journal of Mathematics and Applications 1 4 267–272.
IEEE H. Polat, “Some New Cauchy Sequence Spaces”, Univ. J. Math. Appl., c. 1, sy. 4, ss. 267–272, 2018, doi: 10.32323/ujma.399587.
ISNAD Polat, Harun. “Some New Cauchy Sequence Spaces”. Universal Journal of Mathematics and Applications 1/4 (Aralık 2018), 267-272. https://doi.org/10.32323/ujma.399587.
JAMA Polat H. Some New Cauchy Sequence Spaces. Univ. J. Math. Appl. 2018;1:267–272.
MLA Polat, Harun. “Some New Cauchy Sequence Spaces”. Universal Journal of Mathematics and Applications, c. 1, sy. 4, 2018, ss. 267-72, doi:10.32323/ujma.399587.
Vancouver Polat H. Some New Cauchy Sequence Spaces. Univ. J. Math. Appl. 2018;1(4):267-72.

23181

Universal Journal of Mathematics and Applications 

29207 29139 29137 29138 30898 29130  13377

28629  UJMA'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.