In this paper, we establish the following results: Let $M$ be an $% m-$dimensional compact totally real minimal submanifold immersed in a locally symmetric Bochner-Kaehler manifold $\tilde{M}$ with Ricci curvature bounded from below. Then either $M$ is a totally geodesic or \begin{equation*} \inf r\leq \frac{1}{2}\left( \frac{1}{2}m\left( m-1\right) \tilde{k}-\frac{1% }{3}\left( m+1\right) \tilde{c}\right), \end{equation*}% where $r$ is the scalar curvature of $M.$
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 20 Aralık 2018 |
Gönderilme Tarihi | 9 Mayıs 2018 |
Kabul Tarihi | 16 Temmuz 2018 |
Yayımlandığı Sayı | Yıl 2018 Cilt: 1 Sayı: 4 |
Universal Journal of Mathematics and Applications
UJMA'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.