Araştırma Makalesi
BibTex RIS Kaynak Göster

An Arbitrary Order Differential Equations on Times Scale

Yıl 2018, Cilt: 1 Sayı: 4, 262 - 266, 20.12.2018
https://doi.org/10.32323/ujma.456191

Öz

Here existence and stability results of $\psi$-Hilfer fractional differential equations on time scales is obtained. Here sufficient condition for existence and uniqueness of solution by using Schauder's fixed point theorem (FPT) and Banach FPT is produced. In addition, generalized Ulam stability of the proposed problem is also discussed. problem.

Kaynakça

  • [1] A. Ahmadkhanlu, M. Jahanshahi, On the existence and uniqueness of solution of initial value problem for fractional order differential equations on time scales, Bull. Iranian Math. Soc., 38 (2012), 241-252.
  • [2] R. P. Agarwal, M. Bohner, Basic calculus on time scales and some of its applications, Results Math., 35 (1999), 3-22.
  • [3] N. Benkhettou, A. Hammoudi, D. F. M. Torres, Existence and uniqueness of solution for a fractional Riemann-lioville initial value problem on time scales, J. King Saud Univ. Sci., 28 (2016), 87-92.
  • [4] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Birkhauser, Boston, 2003.
  • [5] M. Bohner, A. Peterson, Dtnamica equations on times scale, Birkhauser, Boston, Boston, MA.
  • [6] K. M. Furati, M. D. Kassim, N.e-. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616-1626.
  • [7] H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 15 (2015), 344-354.
  • [8] S. Harikrishnan, K. Shah, D. Baleanu, K. Kanagarajan, Note on the solution of random differential equations via y-Hilfer fractional derivative, Adv. Difference Equ., 2018(224) (2018).
  • [9] R. Hilfer, Application of fractional calculus in physics, World Scientific, Singapore, 1999.
  • [10] R. W. Ibrahim, Generalized Ulam-Hyers stability for fractional differential equations, Int. J. Math., 23 (2012).
  • [11] P. Muniyappan, S. Rajan, Hyers-Ulam-Rassias stability of fractional differential equation, Int. J. Pure Appl. Math., 102 (2015), 631-642.
  • [12] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
  • [13] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, theory and applications, Gordon and Breach Sci. Publishers, Yverdon, 1993.
  • [14] J. Vanterler da C. Sousa, E. Capelas de Oliveira, On the y-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., (in press).
  • [15] J. Vanterler da C. Sousa, E. Capelas de Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., (in press).
  • [16] D. Vivek, K. Kanagarajan, E. M. Elsayed, Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math., 15 (2018), 1-15.
  • [17] J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron J. Qual. Theory Differ. Equ., 63 (2011), 1-10.
Yıl 2018, Cilt: 1 Sayı: 4, 262 - 266, 20.12.2018
https://doi.org/10.32323/ujma.456191

Öz

Kaynakça

  • [1] A. Ahmadkhanlu, M. Jahanshahi, On the existence and uniqueness of solution of initial value problem for fractional order differential equations on time scales, Bull. Iranian Math. Soc., 38 (2012), 241-252.
  • [2] R. P. Agarwal, M. Bohner, Basic calculus on time scales and some of its applications, Results Math., 35 (1999), 3-22.
  • [3] N. Benkhettou, A. Hammoudi, D. F. M. Torres, Existence and uniqueness of solution for a fractional Riemann-lioville initial value problem on time scales, J. King Saud Univ. Sci., 28 (2016), 87-92.
  • [4] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Birkhauser, Boston, 2003.
  • [5] M. Bohner, A. Peterson, Dtnamica equations on times scale, Birkhauser, Boston, Boston, MA.
  • [6] K. M. Furati, M. D. Kassim, N.e-. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616-1626.
  • [7] H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 15 (2015), 344-354.
  • [8] S. Harikrishnan, K. Shah, D. Baleanu, K. Kanagarajan, Note on the solution of random differential equations via y-Hilfer fractional derivative, Adv. Difference Equ., 2018(224) (2018).
  • [9] R. Hilfer, Application of fractional calculus in physics, World Scientific, Singapore, 1999.
  • [10] R. W. Ibrahim, Generalized Ulam-Hyers stability for fractional differential equations, Int. J. Math., 23 (2012).
  • [11] P. Muniyappan, S. Rajan, Hyers-Ulam-Rassias stability of fractional differential equation, Int. J. Pure Appl. Math., 102 (2015), 631-642.
  • [12] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
  • [13] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, theory and applications, Gordon and Breach Sci. Publishers, Yverdon, 1993.
  • [14] J. Vanterler da C. Sousa, E. Capelas de Oliveira, On the y-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., (in press).
  • [15] J. Vanterler da C. Sousa, E. Capelas de Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., (in press).
  • [16] D. Vivek, K. Kanagarajan, E. M. Elsayed, Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math., 15 (2018), 1-15.
  • [17] J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron J. Qual. Theory Differ. Equ., 63 (2011), 1-10.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

S. Harikrishnana

Rabha İbrahim

K. Kanagarajan

Yayımlanma Tarihi 20 Aralık 2018
Gönderilme Tarihi 31 Ağustos 2018
Kabul Tarihi 26 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 4

Kaynak Göster

APA Harikrishnana, S., İbrahim, R., & Kanagarajan, K. (2018). An Arbitrary Order Differential Equations on Times Scale. Universal Journal of Mathematics and Applications, 1(4), 262-266. https://doi.org/10.32323/ujma.456191
AMA Harikrishnana S, İbrahim R, Kanagarajan K. An Arbitrary Order Differential Equations on Times Scale. Univ. J. Math. Appl. Aralık 2018;1(4):262-266. doi:10.32323/ujma.456191
Chicago Harikrishnana, S., Rabha İbrahim, ve K. Kanagarajan. “An Arbitrary Order Differential Equations on Times Scale”. Universal Journal of Mathematics and Applications 1, sy. 4 (Aralık 2018): 262-66. https://doi.org/10.32323/ujma.456191.
EndNote Harikrishnana S, İbrahim R, Kanagarajan K (01 Aralık 2018) An Arbitrary Order Differential Equations on Times Scale. Universal Journal of Mathematics and Applications 1 4 262–266.
IEEE S. Harikrishnana, R. İbrahim, ve K. Kanagarajan, “An Arbitrary Order Differential Equations on Times Scale”, Univ. J. Math. Appl., c. 1, sy. 4, ss. 262–266, 2018, doi: 10.32323/ujma.456191.
ISNAD Harikrishnana, S. vd. “An Arbitrary Order Differential Equations on Times Scale”. Universal Journal of Mathematics and Applications 1/4 (Aralık 2018), 262-266. https://doi.org/10.32323/ujma.456191.
JAMA Harikrishnana S, İbrahim R, Kanagarajan K. An Arbitrary Order Differential Equations on Times Scale. Univ. J. Math. Appl. 2018;1:262–266.
MLA Harikrishnana, S. vd. “An Arbitrary Order Differential Equations on Times Scale”. Universal Journal of Mathematics and Applications, c. 1, sy. 4, 2018, ss. 262-6, doi:10.32323/ujma.456191.
Vancouver Harikrishnana S, İbrahim R, Kanagarajan K. An Arbitrary Order Differential Equations on Times Scale. Univ. J. Math. Appl. 2018;1(4):262-6.

23181

Universal Journal of Mathematics and Applications 

29207 29139 29137 29138 30898 29130  13377

28629  UJMA'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.