Research Article
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 4, 170 - 179, 26.12.2019
https://doi.org/10.32323/ujma.561690

Abstract

References

  • [1] A. Nicholson and V. Bailey, The balance of animal population, Proc. Zool. Soc. Lond., 3, (1935).
  • [2] L.J.S. Allen, An Introduction to Mathematical Biology, Pearson, New Jersey, (2007).
  • [3] Ö . Ak Gümüş, Dynamical Consequences and Stability Analysis of a New Host-Parasitoid Model, Gen. Math. Notes, 27(1), (2015), 9-15.
  • [4] Ö . Ak Gümüş, Kangalgil F., Allee effect and stability in a discrete-time host-parasitoid model, J. Adv. Res. Appl. Math., 7(1), (2015), 94-99.
  • [5] U. Ufuktepe, S. Kapc¸ak, Stability analysis of a host parasite model, Adv. Differ. Equ. doi:10.1186/1687-1847-2013-79.
  • [6] M. N. Qureshi, A. Q. Khan and Q. Din, Asymptotic behavior of a Nicholson-Bailey model, 62, (2014), doi:10.1186/1687-1847.
  • [7] A. Q. Khan and M. N. Qureshi, Dynamics of a modified Nicholson-Bailey host-parasitoid model, Adv. Difference Equ., 23, (2015), doi:10.1186/s13662- 015-0357-2.
  • [8] W. C. Allee Animal Aggregations: A Study in General Sociology, University of Chicago Press, Chicago (1931).
  • [9] U. Ufuktepe, S. Kapc¸ak S and O. Akman, Stability analysis of the Beddington model with Allee effect, Appl. Math. Inf. Sci. 9, (2015), 603-608.
  • [10] C. J. Pennycuick, R. M. Compton and A. Beckingham, A Computer Model for Simulating the Growth of a Population, or of Two Interacting Populations, J. Theoret. Biol., 18, (1968), 316-329.

Dynamics of a Host-Parasitoid Model Related to Pennycuick Growth Form

Year 2019, Volume: 2 Issue: 4, 170 - 179, 26.12.2019
https://doi.org/10.32323/ujma.561690

Abstract

In this study, the dynamical results of the model by obtaining the steady states existing in the host-parasitoid model were given. Also, some results relating to steady states of the model by depending the parameter made from biological assumptions were obtained.

References

  • [1] A. Nicholson and V. Bailey, The balance of animal population, Proc. Zool. Soc. Lond., 3, (1935).
  • [2] L.J.S. Allen, An Introduction to Mathematical Biology, Pearson, New Jersey, (2007).
  • [3] Ö . Ak Gümüş, Dynamical Consequences and Stability Analysis of a New Host-Parasitoid Model, Gen. Math. Notes, 27(1), (2015), 9-15.
  • [4] Ö . Ak Gümüş, Kangalgil F., Allee effect and stability in a discrete-time host-parasitoid model, J. Adv. Res. Appl. Math., 7(1), (2015), 94-99.
  • [5] U. Ufuktepe, S. Kapc¸ak, Stability analysis of a host parasite model, Adv. Differ. Equ. doi:10.1186/1687-1847-2013-79.
  • [6] M. N. Qureshi, A. Q. Khan and Q. Din, Asymptotic behavior of a Nicholson-Bailey model, 62, (2014), doi:10.1186/1687-1847.
  • [7] A. Q. Khan and M. N. Qureshi, Dynamics of a modified Nicholson-Bailey host-parasitoid model, Adv. Difference Equ., 23, (2015), doi:10.1186/s13662- 015-0357-2.
  • [8] W. C. Allee Animal Aggregations: A Study in General Sociology, University of Chicago Press, Chicago (1931).
  • [9] U. Ufuktepe, S. Kapc¸ak S and O. Akman, Stability analysis of the Beddington model with Allee effect, Appl. Math. Inf. Sci. 9, (2015), 603-608.
  • [10] C. J. Pennycuick, R. M. Compton and A. Beckingham, A Computer Model for Simulating the Growth of a Population, or of Two Interacting Populations, J. Theoret. Biol., 18, (1968), 316-329.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Özlem Ak Gümüş 0000-0003-2610-8565

Bekir Sıtkı Bilgi This is me 0000-0003-4826-071X

Publication Date December 26, 2019
Submission Date May 8, 2019
Acceptance Date October 16, 2019
Published in Issue Year 2019 Volume: 2 Issue: 4

Cite

APA Ak Gümüş, Ö., & Bilgi, B. S. (2019). Dynamics of a Host-Parasitoid Model Related to Pennycuick Growth Form. Universal Journal of Mathematics and Applications, 2(4), 170-179. https://doi.org/10.32323/ujma.561690
AMA Ak Gümüş Ö, Bilgi BS. Dynamics of a Host-Parasitoid Model Related to Pennycuick Growth Form. Univ. J. Math. Appl. December 2019;2(4):170-179. doi:10.32323/ujma.561690
Chicago Ak Gümüş, Özlem, and Bekir Sıtkı Bilgi. “Dynamics of a Host-Parasitoid Model Related to Pennycuick Growth Form”. Universal Journal of Mathematics and Applications 2, no. 4 (December 2019): 170-79. https://doi.org/10.32323/ujma.561690.
EndNote Ak Gümüş Ö, Bilgi BS (December 1, 2019) Dynamics of a Host-Parasitoid Model Related to Pennycuick Growth Form. Universal Journal of Mathematics and Applications 2 4 170–179.
IEEE Ö. Ak Gümüş and B. S. Bilgi, “Dynamics of a Host-Parasitoid Model Related to Pennycuick Growth Form”, Univ. J. Math. Appl., vol. 2, no. 4, pp. 170–179, 2019, doi: 10.32323/ujma.561690.
ISNAD Ak Gümüş, Özlem - Bilgi, Bekir Sıtkı. “Dynamics of a Host-Parasitoid Model Related to Pennycuick Growth Form”. Universal Journal of Mathematics and Applications 2/4 (December 2019), 170-179. https://doi.org/10.32323/ujma.561690.
JAMA Ak Gümüş Ö, Bilgi BS. Dynamics of a Host-Parasitoid Model Related to Pennycuick Growth Form. Univ. J. Math. Appl. 2019;2:170–179.
MLA Ak Gümüş, Özlem and Bekir Sıtkı Bilgi. “Dynamics of a Host-Parasitoid Model Related to Pennycuick Growth Form”. Universal Journal of Mathematics and Applications, vol. 2, no. 4, 2019, pp. 170-9, doi:10.32323/ujma.561690.
Vancouver Ak Gümüş Ö, Bilgi BS. Dynamics of a Host-Parasitoid Model Related to Pennycuick Growth Form. Univ. J. Math. Appl. 2019;2(4):170-9.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.