Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 3 Sayı: 3, 115 - 120, 29.09.2020
https://doi.org/10.32323/ujma.588104

Öz

Kaynakça

  • [1] H. M. Ahmed, Approximate controllability of impulsive neutral stochastic differential equations with fractional Brownian motion in a Hilbert space, Adv. Difference Equ., 113 (2014), 1-11.
  • [2] H. M. Ahmed, Controllability of impulsive neutral stochastic differential equations with fractional Brownian motion, IMA J. Math. Control Inform, 32(4) (2015), 781-794
  • [3] A. Boudaoui, E. Lakhel, Controllability of stochastic impulsive neutral functional differential equations driven by fractional Brownian motion with infinite delay, Differ. Equ. Dyn. Syst., 26 (2018), 247-263.
  • [4] G. Da Prato, J. Zabezyk, Stochastic Equations in Infinite Dimensions, Cambridge: University Press, Cambridge, UK, 44 (1992).
  • [5] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci, Springer-Verlag, New York, 44 (1983).
  • [6] V. Lakshmikantham, D. D. Bainor and P. S. Simeonnov, Theory of impulsive differential equations, World Scientific, (1989).
  • [7] N. I. Mahmudov, S. Zorlu, Controllability of nonlinear stochastic systems, Int. J. Control, 76(2) (2003), 95-104.
  • [8] N. I. Mahmudov, On controllability of linear stochastic system in Hilbert space, J. Math. Anal. Appl., 259 (2001), 64-82.
  • [9] A. N. Kolmogorov, Wienerschc Spiralen and einige andere interessante Kurven in Hilbertsehen Raum, C.R.(Doklady)Acad.URSS(N.S), 26 (1940), 115-118.
  • [10] B. B. Mandelbrot, J. W. Van Ness, Fractional Brownian motions, fractional noise and applications, SIAM Rev, 10 (1968), 422-437.
  • [11] E. Lakhel, Controllability of neutral stochastic functional differential equations driven by fractional Brownian motion with infinite delay, Nonlinear Dyn. Syst. Theory, 17(3) (2017), 291-302.
  • [12] E. Lakhel, Controllability of neutral stochastic functional integrodifferential equations driven by fractional Brownian motion, Stoch. Anal. Appl., 34(3) (2016), 427-440.
  • [13] A. Anguraj, K. Ramkumar, Approximate controllability of semilinear stochastic integrodifferential system with nonlocal conditions, Fractal Fract, 2(4) (2018), 29.
  • [14] R. Sakthivel, R. Ganesh, Y. Ren and S. M. Anthoni, Approximate controllability of nonlinear fractional dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 3498-3508.
  • [15] M. Chen, Approximate controllability of stochastic equations in a Hilbert space with fractional Brownian motion, Stoch. Dyn., 15 (2015), 1-16.

Approximate Controllability for Time-Dependent Impulsive Neutral Stochastic Partial Differential Equations with Fractional Brownian Motion and Memory

Yıl 2020, Cilt: 3 Sayı: 3, 115 - 120, 29.09.2020
https://doi.org/10.32323/ujma.588104

Öz

In this manuscript, we investigate the approximate controllability for time-dependent impulsive neutral stochastic partial differential equations with fractional Brownian motion and memory in Hilbert space. By using semigroup theory, stochastic analysis techniques and fixed point approach, we derive a new set of sufficient conditions for the approximate controllability of nonlinear stochastic system under the assumption that the corresponding linear system is approximately controllable. Finally, an example is provided to illustrate our results.                                                    

Kaynakça

  • [1] H. M. Ahmed, Approximate controllability of impulsive neutral stochastic differential equations with fractional Brownian motion in a Hilbert space, Adv. Difference Equ., 113 (2014), 1-11.
  • [2] H. M. Ahmed, Controllability of impulsive neutral stochastic differential equations with fractional Brownian motion, IMA J. Math. Control Inform, 32(4) (2015), 781-794
  • [3] A. Boudaoui, E. Lakhel, Controllability of stochastic impulsive neutral functional differential equations driven by fractional Brownian motion with infinite delay, Differ. Equ. Dyn. Syst., 26 (2018), 247-263.
  • [4] G. Da Prato, J. Zabezyk, Stochastic Equations in Infinite Dimensions, Cambridge: University Press, Cambridge, UK, 44 (1992).
  • [5] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci, Springer-Verlag, New York, 44 (1983).
  • [6] V. Lakshmikantham, D. D. Bainor and P. S. Simeonnov, Theory of impulsive differential equations, World Scientific, (1989).
  • [7] N. I. Mahmudov, S. Zorlu, Controllability of nonlinear stochastic systems, Int. J. Control, 76(2) (2003), 95-104.
  • [8] N. I. Mahmudov, On controllability of linear stochastic system in Hilbert space, J. Math. Anal. Appl., 259 (2001), 64-82.
  • [9] A. N. Kolmogorov, Wienerschc Spiralen and einige andere interessante Kurven in Hilbertsehen Raum, C.R.(Doklady)Acad.URSS(N.S), 26 (1940), 115-118.
  • [10] B. B. Mandelbrot, J. W. Van Ness, Fractional Brownian motions, fractional noise and applications, SIAM Rev, 10 (1968), 422-437.
  • [11] E. Lakhel, Controllability of neutral stochastic functional differential equations driven by fractional Brownian motion with infinite delay, Nonlinear Dyn. Syst. Theory, 17(3) (2017), 291-302.
  • [12] E. Lakhel, Controllability of neutral stochastic functional integrodifferential equations driven by fractional Brownian motion, Stoch. Anal. Appl., 34(3) (2016), 427-440.
  • [13] A. Anguraj, K. Ramkumar, Approximate controllability of semilinear stochastic integrodifferential system with nonlocal conditions, Fractal Fract, 2(4) (2018), 29.
  • [14] R. Sakthivel, R. Ganesh, Y. Ren and S. M. Anthoni, Approximate controllability of nonlinear fractional dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 3498-3508.
  • [15] M. Chen, Approximate controllability of stochastic equations in a Hilbert space with fractional Brownian motion, Stoch. Dyn., 15 (2015), 1-16.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Ramkumar K

K. Ravikumar

Elsayed Elsayed 0000-0003-0894-8472

A. Anguraj

Yayımlanma Tarihi 29 Eylül 2020
Gönderilme Tarihi 7 Temmuz 2019
Kabul Tarihi 13 Temmuz 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 3

Kaynak Göster

APA K, R., Ravikumar, K., Elsayed, E., Anguraj, A. (2020). Approximate Controllability for Time-Dependent Impulsive Neutral Stochastic Partial Differential Equations with Fractional Brownian Motion and Memory. Universal Journal of Mathematics and Applications, 3(3), 115-120. https://doi.org/10.32323/ujma.588104
AMA K R, Ravikumar K, Elsayed E, Anguraj A. Approximate Controllability for Time-Dependent Impulsive Neutral Stochastic Partial Differential Equations with Fractional Brownian Motion and Memory. Univ. J. Math. Appl. Eylül 2020;3(3):115-120. doi:10.32323/ujma.588104
Chicago K, Ramkumar, K. Ravikumar, Elsayed Elsayed, ve A. Anguraj. “Approximate Controllability for Time-Dependent Impulsive Neutral Stochastic Partial Differential Equations With Fractional Brownian Motion and Memory”. Universal Journal of Mathematics and Applications 3, sy. 3 (Eylül 2020): 115-20. https://doi.org/10.32323/ujma.588104.
EndNote K R, Ravikumar K, Elsayed E, Anguraj A (01 Eylül 2020) Approximate Controllability for Time-Dependent Impulsive Neutral Stochastic Partial Differential Equations with Fractional Brownian Motion and Memory. Universal Journal of Mathematics and Applications 3 3 115–120.
IEEE R. K, K. Ravikumar, E. Elsayed, ve A. Anguraj, “Approximate Controllability for Time-Dependent Impulsive Neutral Stochastic Partial Differential Equations with Fractional Brownian Motion and Memory”, Univ. J. Math. Appl., c. 3, sy. 3, ss. 115–120, 2020, doi: 10.32323/ujma.588104.
ISNAD K, Ramkumar vd. “Approximate Controllability for Time-Dependent Impulsive Neutral Stochastic Partial Differential Equations With Fractional Brownian Motion and Memory”. Universal Journal of Mathematics and Applications 3/3 (Eylül 2020), 115-120. https://doi.org/10.32323/ujma.588104.
JAMA K R, Ravikumar K, Elsayed E, Anguraj A. Approximate Controllability for Time-Dependent Impulsive Neutral Stochastic Partial Differential Equations with Fractional Brownian Motion and Memory. Univ. J. Math. Appl. 2020;3:115–120.
MLA K, Ramkumar vd. “Approximate Controllability for Time-Dependent Impulsive Neutral Stochastic Partial Differential Equations With Fractional Brownian Motion and Memory”. Universal Journal of Mathematics and Applications, c. 3, sy. 3, 2020, ss. 115-20, doi:10.32323/ujma.588104.
Vancouver K R, Ravikumar K, Elsayed E, Anguraj A. Approximate Controllability for Time-Dependent Impulsive Neutral Stochastic Partial Differential Equations with Fractional Brownian Motion and Memory. Univ. J. Math. Appl. 2020;3(3):115-20.

23181

Universal Journal of Mathematics and Applications 

29207 29139 29137 29138 30898 29130  13377

28629  UJMA'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.