Araştırma Makalesi
BibTex RIS Kaynak Göster

On Submanifolds of $N(k)$-Quasi Einstein Manifolds with a Type of Semi-Symmetric Metric Connection

Yıl 2020, Cilt: 3 Sayı: 4, 167 - 172, 23.12.2020
https://doi.org/10.32323/ujma.799576

Öz

In this study, we consider the $ N(k)- $quasi Einstein manifolds with respect to a type of semi-symmetric metric connection. We suppose that the generator of $ N(k)- $quasi-Einstein manifolds is parallel with respect to semi-symmetric metric connection and we classify such manifolds. In addition, we consider the submanifolds of a $ N(k)- $quasi Einstein manifold and we obtain some conditions on the totally geodesic and the totally umbilic submanifolds. Finally, we consider a para-Kenmotsu space form as an example of $ N(k)- $quasi-Einstein manifolds.

Kaynakça

  • [1] K. Yano, M. Kon, Structures on Manifolds, Series in Pure Mathematics, World Scientific, 3, 1984.
  • [2] C. Ozgur , M. M. Tripathi, On the concircular curvature tensor of an N(k)-quasi Einstein manifold, Math. Pannon., 18(1), (2007), 95-100.
  • [3] C. Ozgur, N(k)-quasi Einstein manifolds satisfying certain conditions, Chaos Solitons Fractals, 38(5) (2008), 1373-1377.
  • [4] A. Yıldız, U.C. De, A. C¸ etinkaya, On some classes of N(k)-quasi Einstein manifolds, Proc. Natl. Acad. Sci. India A, 83(3) (2013), 239-245.
  • [5] M.C. Chaki, On quasi Einstein manifolds, Publ. Math. Debr., 57 (2000), 297-306.
  • [6] S.K. Chaubey, Existence of N(k)-quasi Einstein manifolds, Facta universitatis Nis. Ser. Math.Inform., 32(3) (2017), 369-385.
  • [7] U.C. De, G.C.Ghosh, On quasi Einstein manifolds, Period. Math. Hung., 48 (2004), 223-231.
  • [8] U. C. De, S. Shenawy, Generalized quasi-Einstein GRW space-times, Int. J. Geom. Methods Mod. Phys., 16(08) (2019), 1950124.
  • [9] G.C. Ghosh, U.C. De, T.Q. Binh, Certain curvature restrictions on a quasi Einstein manifolds, Publ. Math. Debr. 69 (2006), 209-217.
  • [10] A.T. Kotamkar, A. Tarini, T. Brajendra, Certain curvature conditions catisfied by N(k)-quasi Einstein manifolds, Int. J. Innov. Res. Adv. Eng. G. , 1(9) (2015), 1-9.
  • [11] C. Murathan, C. Ozgur, Riemannian manifolds with a semi-symmetric metric connection satisfying some semi-symmetry conditions, Proc. Est. Acad. Sci., 57(4) (2008), 210–216.
  • [12] H.G. Nagaraja, K. Venu, On Ricci solitons in N(k)-quasi Einstein manifolds, NTMSCI, 5(3) (2017), 46-52.
  • [13] G. Pitis¸, Geometry of Kenmotsu Manifolds, Editura Universitatii Transilvania, 2007.
  • [14] B.B. Sinha, K. L. Sai Prasad, A class of almost para contact metric manifolds, Bull. Cal. Math. Soc., 87 (1995), 307–312.
  • [15] M.M. Tripathi, J. Kim, On N(k)􀀀quasi Einstein manifolds, Commun. Korean Math. Soc., 22 (2007), 411-417.
  • [16] A. Taleshian, A. A. Hosseinzadeh, Investigation of some conditions on N(k)-quasi Einstein manifolds, Bull. Malaysian Math. Sci. Soc, 34(3) (2011), 455-464.
  • [17] K. Yano, On semi-symmetric connection, Revue Roumaine Math. Pures Appl., 15 (1970), 1570-1586.
  • [18] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Global Anal. Geom., 36(1) (2008), 37–60.
Yıl 2020, Cilt: 3 Sayı: 4, 167 - 172, 23.12.2020
https://doi.org/10.32323/ujma.799576

Öz

Kaynakça

  • [1] K. Yano, M. Kon, Structures on Manifolds, Series in Pure Mathematics, World Scientific, 3, 1984.
  • [2] C. Ozgur , M. M. Tripathi, On the concircular curvature tensor of an N(k)-quasi Einstein manifold, Math. Pannon., 18(1), (2007), 95-100.
  • [3] C. Ozgur, N(k)-quasi Einstein manifolds satisfying certain conditions, Chaos Solitons Fractals, 38(5) (2008), 1373-1377.
  • [4] A. Yıldız, U.C. De, A. C¸ etinkaya, On some classes of N(k)-quasi Einstein manifolds, Proc. Natl. Acad. Sci. India A, 83(3) (2013), 239-245.
  • [5] M.C. Chaki, On quasi Einstein manifolds, Publ. Math. Debr., 57 (2000), 297-306.
  • [6] S.K. Chaubey, Existence of N(k)-quasi Einstein manifolds, Facta universitatis Nis. Ser. Math.Inform., 32(3) (2017), 369-385.
  • [7] U.C. De, G.C.Ghosh, On quasi Einstein manifolds, Period. Math. Hung., 48 (2004), 223-231.
  • [8] U. C. De, S. Shenawy, Generalized quasi-Einstein GRW space-times, Int. J. Geom. Methods Mod. Phys., 16(08) (2019), 1950124.
  • [9] G.C. Ghosh, U.C. De, T.Q. Binh, Certain curvature restrictions on a quasi Einstein manifolds, Publ. Math. Debr. 69 (2006), 209-217.
  • [10] A.T. Kotamkar, A. Tarini, T. Brajendra, Certain curvature conditions catisfied by N(k)-quasi Einstein manifolds, Int. J. Innov. Res. Adv. Eng. G. , 1(9) (2015), 1-9.
  • [11] C. Murathan, C. Ozgur, Riemannian manifolds with a semi-symmetric metric connection satisfying some semi-symmetry conditions, Proc. Est. Acad. Sci., 57(4) (2008), 210–216.
  • [12] H.G. Nagaraja, K. Venu, On Ricci solitons in N(k)-quasi Einstein manifolds, NTMSCI, 5(3) (2017), 46-52.
  • [13] G. Pitis¸, Geometry of Kenmotsu Manifolds, Editura Universitatii Transilvania, 2007.
  • [14] B.B. Sinha, K. L. Sai Prasad, A class of almost para contact metric manifolds, Bull. Cal. Math. Soc., 87 (1995), 307–312.
  • [15] M.M. Tripathi, J. Kim, On N(k)􀀀quasi Einstein manifolds, Commun. Korean Math. Soc., 22 (2007), 411-417.
  • [16] A. Taleshian, A. A. Hosseinzadeh, Investigation of some conditions on N(k)-quasi Einstein manifolds, Bull. Malaysian Math. Sci. Soc, 34(3) (2011), 455-464.
  • [17] K. Yano, On semi-symmetric connection, Revue Roumaine Math. Pures Appl., 15 (1970), 1570-1586.
  • [18] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Global Anal. Geom., 36(1) (2008), 37–60.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

İnan Ünal

Yayımlanma Tarihi 23 Aralık 2020
Gönderilme Tarihi 24 Eylül 2020
Kabul Tarihi 2 Kasım 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 4

Kaynak Göster

APA Ünal, İ. (2020). On Submanifolds of $N(k)$-Quasi Einstein Manifolds with a Type of Semi-Symmetric Metric Connection. Universal Journal of Mathematics and Applications, 3(4), 167-172. https://doi.org/10.32323/ujma.799576
AMA Ünal İ. On Submanifolds of $N(k)$-Quasi Einstein Manifolds with a Type of Semi-Symmetric Metric Connection. Univ. J. Math. Appl. Aralık 2020;3(4):167-172. doi:10.32323/ujma.799576
Chicago Ünal, İnan. “On Submanifolds of $N(k)$-Quasi Einstein Manifolds With a Type of Semi-Symmetric Metric Connection”. Universal Journal of Mathematics and Applications 3, sy. 4 (Aralık 2020): 167-72. https://doi.org/10.32323/ujma.799576.
EndNote Ünal İ (01 Aralık 2020) On Submanifolds of $N(k)$-Quasi Einstein Manifolds with a Type of Semi-Symmetric Metric Connection. Universal Journal of Mathematics and Applications 3 4 167–172.
IEEE İ. Ünal, “On Submanifolds of $N(k)$-Quasi Einstein Manifolds with a Type of Semi-Symmetric Metric Connection”, Univ. J. Math. Appl., c. 3, sy. 4, ss. 167–172, 2020, doi: 10.32323/ujma.799576.
ISNAD Ünal, İnan. “On Submanifolds of $N(k)$-Quasi Einstein Manifolds With a Type of Semi-Symmetric Metric Connection”. Universal Journal of Mathematics and Applications 3/4 (Aralık 2020), 167-172. https://doi.org/10.32323/ujma.799576.
JAMA Ünal İ. On Submanifolds of $N(k)$-Quasi Einstein Manifolds with a Type of Semi-Symmetric Metric Connection. Univ. J. Math. Appl. 2020;3:167–172.
MLA Ünal, İnan. “On Submanifolds of $N(k)$-Quasi Einstein Manifolds With a Type of Semi-Symmetric Metric Connection”. Universal Journal of Mathematics and Applications, c. 3, sy. 4, 2020, ss. 167-72, doi:10.32323/ujma.799576.
Vancouver Ünal İ. On Submanifolds of $N(k)$-Quasi Einstein Manifolds with a Type of Semi-Symmetric Metric Connection. Univ. J. Math. Appl. 2020;3(4):167-72.

23181

Universal Journal of Mathematics and Applications 

29207 29139 29137 29138 30898 29130  13377

28629  UJMA'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.