Araştırma Makalesi
BibTex RIS Kaynak Göster

Some Results on Composition of Analytic Functions in a Unit Polydisc

Yıl 2024, Cilt: 7 Sayı: 3, 121 - 128, 21.09.2024
https://doi.org/10.32323/ujma.1444221

Öz

The manuscript is an attempt to consider all methods which are applicable to investigation a directional index for composition of an analytic function in some domain and an entire function. The approaches are applied to find sufficient conditions of the $L$-index boundedness in a direction $\mathbf{b}\in\mathbb{C}^n\setminus\{\mathbf{0}\}$, where the continuous function $L$ satisfies some growth condition and the condition of positivity in the unit polydisc. The investigation is based on a counterpart of the Hayman Theorem for the class of analytic functions in the polydisc and a counterpart of logarithmic criterion describing local conduct of logarithmic derivative modulus outside some neighborhoods of zeros. The established results are new advances for the functions analytic in the polydisc and in multidimensional value distribution theory.

Kaynakça

  • [1] A. Bandura, T. Salo, Analytic in a unit polydisc functions of bounded L-index in direction, Mat. Stud., 60(1) (2023), 55–78.
  • [2] V. P. Baksa, A. I. Bandura, T. M. Salo, Skaskiv O.B., Note on boundedness of the L-index in the direction of the composition of slice entire functions, Mat. Stud., 58 (1) (2022), 58–68.
  • [3] A. I. Bandura, M. M. Sheremeta, Bounded l-index and l􀀀M-index and compositions of analytic functions, Mat. Stud., 48(2) (2017), 180-188.
  • [4] M. M. Sheremeta, On the l-index boundedness of some composition of functions, Mat. Stud., 47(2) (2017), 207–210.
  • [5] B. Lepson, Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index, in: Entire Functions and Related Parts of Analysis, J. Korevaar (ed.), Proceedings of Symposia in Pure Math., 11, Am. Math. Soc., Providence (1968), 298–307.
  • [6] A. D. Kuzyk, M. M. Sheremeta, Entire functions of bounded l-distribution of values, Math. Notes, 39(1) (1986), 3–8.
  • [7] A. I. Bandura, Composition, product and sum of analytic functions of bounded L-index in direction in the unit ball, Mat. Stud., 50(2) (2018), 115–134.
  • [8] A. Bandura, Composition of entire functions and bounded L-index in direction, Mat. Stud., 47(2) (2017), 179–184.
  • [9] A. I. Bandura, O. B. Skaskiv, Entire functions of bounded L-index in direction, Mat. Stud., 27(1) (2007), 30–52. (in Ukrainian)
  • [10] W. K. Hayman, Differential inequalities and local valency, Pacific J. Math., 44 (1) (1973), 117-137.
  • [11] A. I. Bandura, O. B. Skaskiv, I. R. Tymkiv, Composition of entire and analytic functions in the unit ball, Carpathian Math. Publ., 14 (1) (2022), 95–103.
  • [12] M. M. Sheremeta, Y.S. Trukhan, Boundedness of the l-index of the Naftalevich-Tsuji product, Ukr. Math. J., 56(2) (2004), 305–317.
  • [13] A. Bandura, O. Skaskiv, L. Smolovyk, Slice holomorphic solutions of some directional differential equations with bounded L-index in the same direction, Demonstr. Math., 52(1) (2019), 482–489.
  • [14] A. A. Goldberg, M. N. Sheremeta, Existence of an entire transcendental function of bounded l-index, Math. Notes, 57(1) (1995), 88–90.
  • [15] I. M. Hural, About some problem for entire functions of unbounded index in any direction, Mat. Stud., 51(1) (2019), 107–110.
  • [16] M. M. Sheremeta, Y. S. Trukhan, Properties of analytic solutions of three similar differential equations of the second order, Carp. Math. Publ., 13(2) (2021), 413–425.
  • [17] M. M. Sheremeta, Y. S. Trukhan, Properties of analytic solutions of a differential equation, Mat. Stud., 52 (2) (2019), 138–143.
  • [18] A. Bandura, O. Skaskiv, Analog of Hayman’s Theorem and its Application to Some System of Linear Partial Differential Equations, J. Math. Phys., Anal., Geom., 15(2) (2019), 170–191.
  • [19] F. Nuray, R.F. Patterson, Vector-valued bivariate entire functions of bounded index satisfying a system of differential equations, Mat. Stud., 49(1) (2018), 67–74.
  • [20] A. I. Bandura, Some improvements of criteria of L-index boundedness in direction, Mat. Stud., 47(1) (2017), 27–32.
  • [21] A. I. Bandura, Analytic functions in the unit ball of bounded value L-distribution in a direction, Mat. Stud., 49 (1) (2018), 75–79.
  • [22] G. H. Fricke, A note on bounded index and bounded value distribution, Indian J. Pure Appl. Math. 11 (4) (1980), 428–432.
  • [23] S. Shah, Entire functions of bounded value distribution and gap power series, In: Studies in Pure Mathematics To the Memory of Paul Tur´an, (P. Erd˝os, L. Alp´ar, G. Hal´asz, A. S´ark¨ozy, eds.). Birkhauser Basel, Basel, 1983. pp. 629-634.
  • [24] R. Roy, S. M. Shah, The product of two functions of bounded value distribution, Indian J. Pure Appl. Math. 17(5) (1986), 690–693.
  • [25] R. Roy, S. M. Shah, Functions of bounded index, bounded value distribution and v-bounded index, Nonlinear Analysis 11 (1987), 1383–1390.
  • [26] M. M. Sheremeta, On the univalence of entire functions of bounded l-index, Mat. Stud., 43(2) (2015), 185–188.
  • [27] F. Nuray, R. F. Patterson, Multivalence of bivariate functions of bounded index, Le Matematiche, 70(2) (2015), 225–233.
  • [28] A. Bandura, T. Salo, O. Skaskiv, L-Index in Joint Variables: Sum and Composition of an Entire Function with a Function With a Vanished Gradient, Fractal and Fractional, 7(8) (2023), Article ID: 593.
  • [29] F. Nuray, R. F. Patterson, Entire bivariate functions of exponential type, Bull. Math. Sci. 2015, 5 () (2015), 171–177.
  • [30] F. Nuray, Bounded index and four dimensional summability methods, Novi Sad J. Math., 49(2) (2019), 73–85.
  • [31] R. F. Patterson, F. A. Nuray, A characterization of holomorphic bivariate functions of bounded index, Math. Slov., 67(3) (2017), 731–736.
Yıl 2024, Cilt: 7 Sayı: 3, 121 - 128, 21.09.2024
https://doi.org/10.32323/ujma.1444221

Öz

Kaynakça

  • [1] A. Bandura, T. Salo, Analytic in a unit polydisc functions of bounded L-index in direction, Mat. Stud., 60(1) (2023), 55–78.
  • [2] V. P. Baksa, A. I. Bandura, T. M. Salo, Skaskiv O.B., Note on boundedness of the L-index in the direction of the composition of slice entire functions, Mat. Stud., 58 (1) (2022), 58–68.
  • [3] A. I. Bandura, M. M. Sheremeta, Bounded l-index and l􀀀M-index and compositions of analytic functions, Mat. Stud., 48(2) (2017), 180-188.
  • [4] M. M. Sheremeta, On the l-index boundedness of some composition of functions, Mat. Stud., 47(2) (2017), 207–210.
  • [5] B. Lepson, Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index, in: Entire Functions and Related Parts of Analysis, J. Korevaar (ed.), Proceedings of Symposia in Pure Math., 11, Am. Math. Soc., Providence (1968), 298–307.
  • [6] A. D. Kuzyk, M. M. Sheremeta, Entire functions of bounded l-distribution of values, Math. Notes, 39(1) (1986), 3–8.
  • [7] A. I. Bandura, Composition, product and sum of analytic functions of bounded L-index in direction in the unit ball, Mat. Stud., 50(2) (2018), 115–134.
  • [8] A. Bandura, Composition of entire functions and bounded L-index in direction, Mat. Stud., 47(2) (2017), 179–184.
  • [9] A. I. Bandura, O. B. Skaskiv, Entire functions of bounded L-index in direction, Mat. Stud., 27(1) (2007), 30–52. (in Ukrainian)
  • [10] W. K. Hayman, Differential inequalities and local valency, Pacific J. Math., 44 (1) (1973), 117-137.
  • [11] A. I. Bandura, O. B. Skaskiv, I. R. Tymkiv, Composition of entire and analytic functions in the unit ball, Carpathian Math. Publ., 14 (1) (2022), 95–103.
  • [12] M. M. Sheremeta, Y.S. Trukhan, Boundedness of the l-index of the Naftalevich-Tsuji product, Ukr. Math. J., 56(2) (2004), 305–317.
  • [13] A. Bandura, O. Skaskiv, L. Smolovyk, Slice holomorphic solutions of some directional differential equations with bounded L-index in the same direction, Demonstr. Math., 52(1) (2019), 482–489.
  • [14] A. A. Goldberg, M. N. Sheremeta, Existence of an entire transcendental function of bounded l-index, Math. Notes, 57(1) (1995), 88–90.
  • [15] I. M. Hural, About some problem for entire functions of unbounded index in any direction, Mat. Stud., 51(1) (2019), 107–110.
  • [16] M. M. Sheremeta, Y. S. Trukhan, Properties of analytic solutions of three similar differential equations of the second order, Carp. Math. Publ., 13(2) (2021), 413–425.
  • [17] M. M. Sheremeta, Y. S. Trukhan, Properties of analytic solutions of a differential equation, Mat. Stud., 52 (2) (2019), 138–143.
  • [18] A. Bandura, O. Skaskiv, Analog of Hayman’s Theorem and its Application to Some System of Linear Partial Differential Equations, J. Math. Phys., Anal., Geom., 15(2) (2019), 170–191.
  • [19] F. Nuray, R.F. Patterson, Vector-valued bivariate entire functions of bounded index satisfying a system of differential equations, Mat. Stud., 49(1) (2018), 67–74.
  • [20] A. I. Bandura, Some improvements of criteria of L-index boundedness in direction, Mat. Stud., 47(1) (2017), 27–32.
  • [21] A. I. Bandura, Analytic functions in the unit ball of bounded value L-distribution in a direction, Mat. Stud., 49 (1) (2018), 75–79.
  • [22] G. H. Fricke, A note on bounded index and bounded value distribution, Indian J. Pure Appl. Math. 11 (4) (1980), 428–432.
  • [23] S. Shah, Entire functions of bounded value distribution and gap power series, In: Studies in Pure Mathematics To the Memory of Paul Tur´an, (P. Erd˝os, L. Alp´ar, G. Hal´asz, A. S´ark¨ozy, eds.). Birkhauser Basel, Basel, 1983. pp. 629-634.
  • [24] R. Roy, S. M. Shah, The product of two functions of bounded value distribution, Indian J. Pure Appl. Math. 17(5) (1986), 690–693.
  • [25] R. Roy, S. M. Shah, Functions of bounded index, bounded value distribution and v-bounded index, Nonlinear Analysis 11 (1987), 1383–1390.
  • [26] M. M. Sheremeta, On the univalence of entire functions of bounded l-index, Mat. Stud., 43(2) (2015), 185–188.
  • [27] F. Nuray, R. F. Patterson, Multivalence of bivariate functions of bounded index, Le Matematiche, 70(2) (2015), 225–233.
  • [28] A. Bandura, T. Salo, O. Skaskiv, L-Index in Joint Variables: Sum and Composition of an Entire Function with a Function With a Vanished Gradient, Fractal and Fractional, 7(8) (2023), Article ID: 593.
  • [29] F. Nuray, R. F. Patterson, Entire bivariate functions of exponential type, Bull. Math. Sci. 2015, 5 () (2015), 171–177.
  • [30] F. Nuray, Bounded index and four dimensional summability methods, Novi Sad J. Math., 49(2) (2019), 73–85.
  • [31] R. F. Patterson, F. A. Nuray, A characterization of holomorphic bivariate functions of bounded index, Math. Slov., 67(3) (2017), 731–736.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Temel Matematik (Diğer)
Bölüm Makaleler
Yazarlar

Andriy Bandura 0000-0003-0598-2237

Petro Kurliak 0000-0001-8113-5211

Oleh Skaskiv 0000-0001-5217-8394

Erken Görünüm Tarihi 25 Ağustos 2024
Yayımlanma Tarihi 21 Eylül 2024
Gönderilme Tarihi 28 Şubat 2024
Kabul Tarihi 31 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 3

Kaynak Göster

APA Bandura, A., Kurliak, P., & Skaskiv, O. (2024). Some Results on Composition of Analytic Functions in a Unit Polydisc. Universal Journal of Mathematics and Applications, 7(3), 121-128. https://doi.org/10.32323/ujma.1444221
AMA Bandura A, Kurliak P, Skaskiv O. Some Results on Composition of Analytic Functions in a Unit Polydisc. Univ. J. Math. Appl. Eylül 2024;7(3):121-128. doi:10.32323/ujma.1444221
Chicago Bandura, Andriy, Petro Kurliak, ve Oleh Skaskiv. “Some Results on Composition of Analytic Functions in a Unit Polydisc”. Universal Journal of Mathematics and Applications 7, sy. 3 (Eylül 2024): 121-28. https://doi.org/10.32323/ujma.1444221.
EndNote Bandura A, Kurliak P, Skaskiv O (01 Eylül 2024) Some Results on Composition of Analytic Functions in a Unit Polydisc. Universal Journal of Mathematics and Applications 7 3 121–128.
IEEE A. Bandura, P. Kurliak, ve O. Skaskiv, “Some Results on Composition of Analytic Functions in a Unit Polydisc”, Univ. J. Math. Appl., c. 7, sy. 3, ss. 121–128, 2024, doi: 10.32323/ujma.1444221.
ISNAD Bandura, Andriy vd. “Some Results on Composition of Analytic Functions in a Unit Polydisc”. Universal Journal of Mathematics and Applications 7/3 (Eylül 2024), 121-128. https://doi.org/10.32323/ujma.1444221.
JAMA Bandura A, Kurliak P, Skaskiv O. Some Results on Composition of Analytic Functions in a Unit Polydisc. Univ. J. Math. Appl. 2024;7:121–128.
MLA Bandura, Andriy vd. “Some Results on Composition of Analytic Functions in a Unit Polydisc”. Universal Journal of Mathematics and Applications, c. 7, sy. 3, 2024, ss. 121-8, doi:10.32323/ujma.1444221.
Vancouver Bandura A, Kurliak P, Skaskiv O. Some Results on Composition of Analytic Functions in a Unit Polydisc. Univ. J. Math. Appl. 2024;7(3):121-8.

23181

Universal Journal of Mathematics and Applications 

29207 29139 29137 29138 30898 29130  13377

28629  UJMA'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.