Basınçlı İnfiltrasyon Yöntemiyle Üretilen AA2024 ve AA6061 Matrisli, B4C ve SiC Takviyeli Kompozit Malzemelerin Mikroyapı, Mekanik ve Isıl İletkenlik Özelliklerine Basıncın Etkisi
Year 2019,
Volume: 11 Issue: 2, 657 - 669, 30.06.2019
Kadir Gündoğan
,
Alperen Refik Bilal Özsarı
Abstract
Bu çalışmada,
AA2024 veya AA6061 matrisli, B4C veya SiC partikül takviyeli olarak üretilen
kompozit malzemelerin mikroyapı, mekanik ve ısıl iletkenlik özelliklerine,
matris bileşimi ile basınç değerinin etkisi incelenmiştir. 48 μm ortalama
tane boyutuna sahip B4C tozları veya 37 μm ortalama tane boyutuna sahip SiC
tozları kullanılarak çelik borular içerisine 50x8 mm ölçülerinde preformlar
oluşturulmuştur. Basınçlı infiltrasyon tekniği kullanılarak 800 oC’de
7 veya 8 bar basınçlarda alüminyum matrisler preformlara infiltre edilmiştir.
Elde edilen kompozitlerin mikroyapı analizleri EDS donanımlı taramalı
elektron mikroskobu (SEM) kullanılarak incelenmiştir. Üretilen numunelerin
SEM görüntülerinde homojen bir mikro yapı dağılımı gözlemlenmiştir.
Numunelerin porozite analizi alkol içerisinde daldırmalı askı aparatlı hassas
terazi cihazı kullanılarak yapılmıştır. Basınç miktarı arttıkça, porozite
hacim oranlarında büyük ölçüde azama meydana gelmiştir. Matris elemanlarına
ayrı ayrı olarak infiltre edilen takviye elemanlarının matris elemanında
oluşturdukları yapısal farklılıklar, X-Işını difraksiyonu (XRD) ile
incelenmiştir.Üretilen kompozit malzemelerin basınç miktarının artması ile
sertlik dayanımlarında ve basma mukavemetlerinde artış meydana geldiği
gözlemlenmiştir. Mekanik özellikler açısından kıyaslamada takviye elemanları
açısından kıyaslama yapıldığındanda SiC takviyeli kompozit malzemelere göre
B4C takviyeli kompozit malzemelerin daha iyi mekanik özelliklere sahip olduğu
sonucuna ulaşılmıştır.
|
References
- 1. Ateş S., Uzun, I., Çalın R. and Çıtak R., (2012). Effect of Infiltration Pressure on Thermal Conductivity of Al 2014 Matrix Composite Powered by Silicon Carbide, Asian Journal of Chemistry, 24(1), 76-80.
- 2. Çevik, E., Sun Y., Ahlatçı H. and Türen Y. (2016). Influence of Mg addition on B4C reinforced Al and Al12Si matrix composites production by pressure infiltration technique Metal Science and Heat Treatment, 58, 357–361.
- 3. Çevik E. and Sun Y., (2015). Mechanical and Tribological Behaviour of B4C Reinforced AlSi12-XMg Matrix Composites, Journal of The Balkan Tribological Association, 21(4), 725-735.
- 4. Sevim I., Sahin S., Çuğ H., Çevik E., Hayat F. and Karali M., (2014). Effect of Aging Treatment on Surface Roughness, Mechanical Properties, and Fracture Behavior of 6XXX and 7XXX Aluminum Alloys, Strength of Materials, 46(2), 190-197.
- 5. Ahlatci, H., Koçer, T., Candan, E. and Çimenoğlu, H., (2006). Wear behaviour of Al/(Al2O3p+SiCp) hybrid composites, Tribology International, 39(3), 213-220.
- 6. Stefanescu D. M., Dhimdaw D. K. and Ahuja S., (1992). Authors’ reply, Metallurgical and Materials Transactions A, 23(8), 2328-2330.. 7. Gedeon, S. A., and Tangerini, I., (1991). A new method for bonding metal matrix composite inserts during casting, Materials Science and Engineering A, 144(1-2), 237-240.
- 7. Gedeon, S. A., and Tangerini, I., (1991). A new method for bonding metal matrix composite inserts during casting, Materials Science and Engineering A, 144(1-2), 237-240.
- 8. Şahin, Y., (2003). Preparation and some properties of SiC particle reinforced aluminium alloy composites, Materials and Design, 24(8), 671-679.
- 9. Buhrmaster C. L., Clark D. E. and Smart H. B. (1988). Spray Casting Aluminum and Al/SiC Composite, Journal of Metals, 40(11), 44-45.
- 10. Aguliar-Martinez J. A., Pech-Canul M. I., Rodriguez-Reyes M. and De Lapena J. L., (2003). Effect of processing parameters on the degree of infiltration of SiCp preforms by Al–Si–Mg alloys, Materials Letters, 57(26-27), 4332-4335.
- 11. Hamzawy, E. M., El-Kheshen, A. A., Zawrah, M. F., (2005). Densification and properties of glass/cordierite composites, Ceramics International, 31(3), 383-389.
- 12. Benal, M.M. and Shivanand, H.K., (2007). Effects of reinforcements content and ageing durations on wear characteristics of Al (6061) based hybrid composites, Wear, 262(5-6), 759-763.
- 13. Zweben C., (1998). Advances in composite materials for thermal management in electronic packaging. JOM (The Journal of The Minerals, Metals & Materials Society), 50(6), 47–51.
- 14. Liu, Y. R., Liu J. J., Zhu B. L., Luo Z. B. and Miao H.Z., (1997). The computer simulation of the temperature distribution on the surface of ceramic cutting tools, Wear, 210(1-2), 39-44.
- 15. Ateş, S. & Kızılok E., (2011). Basınçlı infiltrasyon ile üretilen SiC/Al2014 kompozitlerin özelliklerine infiltrasyon sıcaklığının etkisinin tek yönlü varyans analizi ile incelenmesi, International Journal of Research and Development, 3(1), 50-54.
- 16. Ahlatçı, H., Candan, E. and Çimenoğlu, H., (2002). Effect of particle size on the mechanical properties of 60 vol. % SiCp reinforced Al matrix composites, Zeitschrift für Metallkunde, 93(4), 330-333.
- 17. Mazaheri Y., Meratian M., Emadi R. and Najarian A.R., (2013). Comparison of microstructural and mechanical properties of Al–TiC, Al–B4C and Al–TiC–B4C composites prepared by casting techniques, Materials Science & Engineering, A, 560, 278-287.
Effect Of Pressure On The Microstructure, Mechanical and Thermal Conductivity Properties Of Composite Materials with Matrix of AA2024 or AA6061 and Reinforced B4C or SiC Produced by Pressurized Infiltration Method
Year 2019,
Volume: 11 Issue: 2, 657 - 669, 30.06.2019
Kadir Gündoğan
,
Alperen Refik Bilal Özsarı
Abstract
In this study, the effect
of matrix composition and pressure value on the microstructure and mechanical
properties of composite materials produced by AA2024 and AA6061 matrix and 50%
B4C and SiC particle supplementation were investigated. Performs were formed by
using SiC powders with B4C powders having an average grain size of 48 μm and a
particle size of 37 μm. The prepared preforms were infiltrated with aluminum
matrices at 7 and 8 bar pressures using the pressure infiltration technique at
800 oC. The microstructure analysis of the composite materials was
carried out using EDS-equipped scanning electron microscope (SEM). A
homogeneous microstructure was observed at the SEM analysis of the obtained
samples. The porosity analysis was done by using the apparatus with the
suspension apparatus in the integrated alcohol. A decrease in the porosity
volume ratio was obtained with increasing pressure. It has been observed that
the increase in the pressure amount of the composite materials produced
increases the hardness strengths and compressive strengths. In addition, it is
observed that B4C reinforced composite materials have better mechanical
properties than SiC reinforced composite materials when the reinforcement
elements are compared.
References
- 1. Ateş S., Uzun, I., Çalın R. and Çıtak R., (2012). Effect of Infiltration Pressure on Thermal Conductivity of Al 2014 Matrix Composite Powered by Silicon Carbide, Asian Journal of Chemistry, 24(1), 76-80.
- 2. Çevik, E., Sun Y., Ahlatçı H. and Türen Y. (2016). Influence of Mg addition on B4C reinforced Al and Al12Si matrix composites production by pressure infiltration technique Metal Science and Heat Treatment, 58, 357–361.
- 3. Çevik E. and Sun Y., (2015). Mechanical and Tribological Behaviour of B4C Reinforced AlSi12-XMg Matrix Composites, Journal of The Balkan Tribological Association, 21(4), 725-735.
- 4. Sevim I., Sahin S., Çuğ H., Çevik E., Hayat F. and Karali M., (2014). Effect of Aging Treatment on Surface Roughness, Mechanical Properties, and Fracture Behavior of 6XXX and 7XXX Aluminum Alloys, Strength of Materials, 46(2), 190-197.
- 5. Ahlatci, H., Koçer, T., Candan, E. and Çimenoğlu, H., (2006). Wear behaviour of Al/(Al2O3p+SiCp) hybrid composites, Tribology International, 39(3), 213-220.
- 6. Stefanescu D. M., Dhimdaw D. K. and Ahuja S., (1992). Authors’ reply, Metallurgical and Materials Transactions A, 23(8), 2328-2330.. 7. Gedeon, S. A., and Tangerini, I., (1991). A new method for bonding metal matrix composite inserts during casting, Materials Science and Engineering A, 144(1-2), 237-240.
- 7. Gedeon, S. A., and Tangerini, I., (1991). A new method for bonding metal matrix composite inserts during casting, Materials Science and Engineering A, 144(1-2), 237-240.
- 8. Şahin, Y., (2003). Preparation and some properties of SiC particle reinforced aluminium alloy composites, Materials and Design, 24(8), 671-679.
- 9. Buhrmaster C. L., Clark D. E. and Smart H. B. (1988). Spray Casting Aluminum and Al/SiC Composite, Journal of Metals, 40(11), 44-45.
- 10. Aguliar-Martinez J. A., Pech-Canul M. I., Rodriguez-Reyes M. and De Lapena J. L., (2003). Effect of processing parameters on the degree of infiltration of SiCp preforms by Al–Si–Mg alloys, Materials Letters, 57(26-27), 4332-4335.
- 11. Hamzawy, E. M., El-Kheshen, A. A., Zawrah, M. F., (2005). Densification and properties of glass/cordierite composites, Ceramics International, 31(3), 383-389.
- 12. Benal, M.M. and Shivanand, H.K., (2007). Effects of reinforcements content and ageing durations on wear characteristics of Al (6061) based hybrid composites, Wear, 262(5-6), 759-763.
- 13. Zweben C., (1998). Advances in composite materials for thermal management in electronic packaging. JOM (The Journal of The Minerals, Metals & Materials Society), 50(6), 47–51.
- 14. Liu, Y. R., Liu J. J., Zhu B. L., Luo Z. B. and Miao H.Z., (1997). The computer simulation of the temperature distribution on the surface of ceramic cutting tools, Wear, 210(1-2), 39-44.
- 15. Ateş, S. & Kızılok E., (2011). Basınçlı infiltrasyon ile üretilen SiC/Al2014 kompozitlerin özelliklerine infiltrasyon sıcaklığının etkisinin tek yönlü varyans analizi ile incelenmesi, International Journal of Research and Development, 3(1), 50-54.
- 16. Ahlatçı, H., Candan, E. and Çimenoğlu, H., (2002). Effect of particle size on the mechanical properties of 60 vol. % SiCp reinforced Al matrix composites, Zeitschrift für Metallkunde, 93(4), 330-333.
- 17. Mazaheri Y., Meratian M., Emadi R. and Najarian A.R., (2013). Comparison of microstructural and mechanical properties of Al–TiC, Al–B4C and Al–TiC–B4C composites prepared by casting techniques, Materials Science & Engineering, A, 560, 278-287.