Correlation Between Surface, Thermal, Mechanical and Morphological Properties of Polylactic Acid/Polypropylene and Polylactic Acid/Polyamide 6 Blends
Yıl 2022,
Cilt: 14 Sayı: 1, 84 - 94, 31.01.2022
Sibel Tuna
,
Meral Akkoyun
Öz
In the automotive sector, which is one of the sectors where polymers are mostly used, their behaviour and compatibility in secondary processes such as painting and coating applications are important in the preference of polymers according to their usage areas as well as mechanical and thermal properties. In this context, it is known that surface wettability of a polymer material is of great importance for different application areas and it can be stated that wetting and non-wetting behaviours play an important role in the selection of polymers and their industrial applications. In this study, the contact angle properties of polypropylene (PP) and polyamide 6 (PA6), which are the most used polymers in the automotive sector and their polymer blends prepared by using polylactic acid (PLA) were examined. When PLA/PP and PLA/PA6 mixtures were compared, it was observed that there were significant differences in contact angle measurements and these properties detected in water contact angle measurements were attributed to changes in chemical structures, functional groups and morphology of related polymers. Surface analysis were supported by thermal, mechanical and morphological analysis and differences in static contact angle measurement results were explained.
Destekleyen Kurum
Scientific Research Projects Unit of Bursa Technical University
Teşekkür
The authors gratefully acknowledge the Scientific Research Projects Unit of Bursa Technical University (under the contract number of 190D001) and Bursa Technical University Central Research Laboratory for providing facilities for this research.
Kaynakça
- Auras, R. A., Harte, B., Selke, S., & Hernandez, R. (2003). Mechanical, physical, and barrier properties of poly (lactide) films. Journal of Plastic Film & Sheeting, 19(2), 123-135. doi:10.1177/8756087903039702
- Bhasney, S. M., Kumar, A., & Katiyar, V. (2020). Microcrystalline cellulose, polylactic acid and polypropylene biocomposites and its morphological, mechanical, thermal and rheological properties. Composites Part B: Engineering, 184, 107717. doi:10.1016/j.compositesb.2019.107717
- Di, Y., Iannace, S., Di Maio, E., & Nicolais, L. (2005). Reactively modified poly (lactic acid): properties and foam processing,” Macromolecular Materials and Engineering., 290(11), 1083-1090. doi:10.1002/mame.200500115
- Ebadi-Dehaghani, H., Khonakdar, H. A., Barikani, M., & Jafari, S. H. (2015). Experimental and theoretical analyses of mechanical properties of PP/PLA/clay nanocomposites. Composites Part B: Engineering, 69, 133-144. doi:10.1016/j.compositesb.2014.09.006
- Feng, F., & Ye, L. (2010). Structure and property of polylactide/polyamide blends. Journal of Macromolecular Science, Part B Physics, 49(6), 1117-1127. doi:10.1080/00222341003609179
- Grundke, K., Pöschel, K., Synytska, A., Frenzel, R., Drechsler, A., Nitschke, M., Cordeiro, A. L., Uhlmann, P., & Welzel, P. B. (2015). Experimental studies of contact angle hysteresis phenomena on polymer surfaces-Toward the understanding and control of wettability for different applications. Advances in Colloid and Interface Science, 222, 350-376. doi:10.1016/j.cis.2014.10.012
- Hamad, K., Kaseem, M., Ayyoob, M., Joo, J., & Deri, F. (2018). Polylactic acid blends: The future of green, light and tough. Progress in Polymer Science, 85, 83-127. doi:10.1016/j.progpolymsci.2018.07.001
- He, Y., Xu, Y., Wei, J., Fan, Z., & Li, S. (2008). Unique crystallization behavior of poly (L-lactide)/poly (D-lactide) stereocomplex depending on initial melt states. Polymer, 49(26), 5670-5675. doi:10.1016/j.polymer.2008.10.028
- Karimpour-Motlagh, N., Khonakdar, H. A., Jafari, S. M. A., Mahjub, A., Panahi-Sarmad, M., Kasbi, S. F., Shojaei, S., Goodarzi, V., & Arjmand, M. (2020). Influence of polypropylene and nanoclay on thermal and thermo-oxidative degradation of poly (lactide acid): TG-FTIR, TG-DSC studies and kinetic analysis. Thermochimica Acta, 691, 178709. doi:10.1016/j.tca.2020.178709
- Kawashima, N., Ogawa, S., Obuchi, S., Matsuo, M., & Yagi, T. (2005). Polylactic acid ‘LACEA’. Biopolymer Online, 4. doi:10.1002/3527600035.bpol4009
- Khankrua, R., Pivsa-Art, S., Hiroyuki, H., & Suttiruengwong, S. (2014). Effect of chain extenders on thermal and mechanical properties of poly (lactic acid) at high processing temperatures: Potential application in PLA/Polyamide 6 blend. Polymer Degradation and Stability, 108, 232-240. doi:10.1016/j.polymdegradstab.2014.04.019
- Mallick, P. K. (2021). Thermoplastics and thermoplastic–matrix composites for lightweight automotive structures. Materials, design and manufacturing for lightweight vehicles. MA: Woodhead Publishing.
- Nampoothiri, K. M., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. doi:10.1016/j.biortech.2010.05.092
- Pan, P., & Inoue, Y. (2009). Polymorphism and isomorphism in biodegradable polyesters. Progress in Polymer Science, 34(7), 605-640. doi:10.1016/j.progpolymsci.2009.01.003
- Pivsa-Art, S., Kord-Sa-Ard, J., Pivsa-Art, W., Wongpajan, R., O-Charoen, N., Pavasupree, S., & Hamada, H. (2016). Effect of compatibilizer on PLA/PP blend for injection molding. Energy Procedia, 89, 353-360. doi:10.1016/j.egypro.2016.05.046
- Ploypetchara, N., Suppakul, P., Atong, D., & Pechyen, C. (2014). Blend of polypropylene/poly (lactic acid) for medical packaging application: physicochemical, thermal, mechanical, and barrier properties. Energy Procedia, 56, 201-210. doi:10.1016/j.egypro.2014.07.150
- Pradeep, S. A., Iyer, R. K., Kazan, H., & Pilla, S. (2017). Automotive applications of plastics: past, present, and future. Applied Plastics Engineering Handbook (2nd ed.). MA: William Andrew.
- Reddy, N., Nama, D., & Yang, Y. (2008). Polylactic acid/polypropylene polyblend fibers for better resistance to degradation. Polymer Degradation and Stability, 93(1), 233-241. doi:10.1016/j.polymdegradstab.2007.09.005
- Stoclet, G., Seguela, R., & Lefebvre, J.-M. (2011). Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: Polylactide/polyamide11. Polymer, 52(6), 1417-1425. doi:10.1016/j.polymer.2011.02.002
- Sui, G., Jing, M., Zhao, J., Wang, K., Zhang, Q., & Fu, Q. (2018). A comparison study of high shear force and compatibilizer on the phase morphologies and properties of polypropylene/polylactide (PP/PLA) blends. Polymer, 154, 119-127. doi:10.1016/j.polymer.2018.09.005
Yıl 2022,
Cilt: 14 Sayı: 1, 84 - 94, 31.01.2022
Sibel Tuna
,
Meral Akkoyun
Kaynakça
- Auras, R. A., Harte, B., Selke, S., & Hernandez, R. (2003). Mechanical, physical, and barrier properties of poly (lactide) films. Journal of Plastic Film & Sheeting, 19(2), 123-135. doi:10.1177/8756087903039702
- Bhasney, S. M., Kumar, A., & Katiyar, V. (2020). Microcrystalline cellulose, polylactic acid and polypropylene biocomposites and its morphological, mechanical, thermal and rheological properties. Composites Part B: Engineering, 184, 107717. doi:10.1016/j.compositesb.2019.107717
- Di, Y., Iannace, S., Di Maio, E., & Nicolais, L. (2005). Reactively modified poly (lactic acid): properties and foam processing,” Macromolecular Materials and Engineering., 290(11), 1083-1090. doi:10.1002/mame.200500115
- Ebadi-Dehaghani, H., Khonakdar, H. A., Barikani, M., & Jafari, S. H. (2015). Experimental and theoretical analyses of mechanical properties of PP/PLA/clay nanocomposites. Composites Part B: Engineering, 69, 133-144. doi:10.1016/j.compositesb.2014.09.006
- Feng, F., & Ye, L. (2010). Structure and property of polylactide/polyamide blends. Journal of Macromolecular Science, Part B Physics, 49(6), 1117-1127. doi:10.1080/00222341003609179
- Grundke, K., Pöschel, K., Synytska, A., Frenzel, R., Drechsler, A., Nitschke, M., Cordeiro, A. L., Uhlmann, P., & Welzel, P. B. (2015). Experimental studies of contact angle hysteresis phenomena on polymer surfaces-Toward the understanding and control of wettability for different applications. Advances in Colloid and Interface Science, 222, 350-376. doi:10.1016/j.cis.2014.10.012
- Hamad, K., Kaseem, M., Ayyoob, M., Joo, J., & Deri, F. (2018). Polylactic acid blends: The future of green, light and tough. Progress in Polymer Science, 85, 83-127. doi:10.1016/j.progpolymsci.2018.07.001
- He, Y., Xu, Y., Wei, J., Fan, Z., & Li, S. (2008). Unique crystallization behavior of poly (L-lactide)/poly (D-lactide) stereocomplex depending on initial melt states. Polymer, 49(26), 5670-5675. doi:10.1016/j.polymer.2008.10.028
- Karimpour-Motlagh, N., Khonakdar, H. A., Jafari, S. M. A., Mahjub, A., Panahi-Sarmad, M., Kasbi, S. F., Shojaei, S., Goodarzi, V., & Arjmand, M. (2020). Influence of polypropylene and nanoclay on thermal and thermo-oxidative degradation of poly (lactide acid): TG-FTIR, TG-DSC studies and kinetic analysis. Thermochimica Acta, 691, 178709. doi:10.1016/j.tca.2020.178709
- Kawashima, N., Ogawa, S., Obuchi, S., Matsuo, M., & Yagi, T. (2005). Polylactic acid ‘LACEA’. Biopolymer Online, 4. doi:10.1002/3527600035.bpol4009
- Khankrua, R., Pivsa-Art, S., Hiroyuki, H., & Suttiruengwong, S. (2014). Effect of chain extenders on thermal and mechanical properties of poly (lactic acid) at high processing temperatures: Potential application in PLA/Polyamide 6 blend. Polymer Degradation and Stability, 108, 232-240. doi:10.1016/j.polymdegradstab.2014.04.019
- Mallick, P. K. (2021). Thermoplastics and thermoplastic–matrix composites for lightweight automotive structures. Materials, design and manufacturing for lightweight vehicles. MA: Woodhead Publishing.
- Nampoothiri, K. M., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. doi:10.1016/j.biortech.2010.05.092
- Pan, P., & Inoue, Y. (2009). Polymorphism and isomorphism in biodegradable polyesters. Progress in Polymer Science, 34(7), 605-640. doi:10.1016/j.progpolymsci.2009.01.003
- Pivsa-Art, S., Kord-Sa-Ard, J., Pivsa-Art, W., Wongpajan, R., O-Charoen, N., Pavasupree, S., & Hamada, H. (2016). Effect of compatibilizer on PLA/PP blend for injection molding. Energy Procedia, 89, 353-360. doi:10.1016/j.egypro.2016.05.046
- Ploypetchara, N., Suppakul, P., Atong, D., & Pechyen, C. (2014). Blend of polypropylene/poly (lactic acid) for medical packaging application: physicochemical, thermal, mechanical, and barrier properties. Energy Procedia, 56, 201-210. doi:10.1016/j.egypro.2014.07.150
- Pradeep, S. A., Iyer, R. K., Kazan, H., & Pilla, S. (2017). Automotive applications of plastics: past, present, and future. Applied Plastics Engineering Handbook (2nd ed.). MA: William Andrew.
- Reddy, N., Nama, D., & Yang, Y. (2008). Polylactic acid/polypropylene polyblend fibers for better resistance to degradation. Polymer Degradation and Stability, 93(1), 233-241. doi:10.1016/j.polymdegradstab.2007.09.005
- Stoclet, G., Seguela, R., & Lefebvre, J.-M. (2011). Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: Polylactide/polyamide11. Polymer, 52(6), 1417-1425. doi:10.1016/j.polymer.2011.02.002
- Sui, G., Jing, M., Zhao, J., Wang, K., Zhang, Q., & Fu, Q. (2018). A comparison study of high shear force and compatibilizer on the phase morphologies and properties of polypropylene/polylactide (PP/PLA) blends. Polymer, 154, 119-127. doi:10.1016/j.polymer.2018.09.005