Hotel bathrooms are one of the most important places in terms of customer satisfaction, and where the most complaints are reported. To share their experiences, guests rate hotels, comment, and share images of their positive or negative ratings. An important part of the room images shared by guests is related to bathrooms. Guests tend to prove their satisfaction or dissatisfaction with the bathrooms with images in their comments. These Positive or negative comments and visuals potentially affect the prospective guests.
In this study, two different versions of a deep learning algorithm were designed to classify hotel bathrooms as satisfactory (good) or unsatisfactory (bad, when any defects such as dirtiness, deficiencies, malfunctions were present) by analyzing images. The best-performer between the two models was determined as a result of a series of extensive experimental studies. The models were trained for each of 144 combinations of 5 hyper-parameter sets with a data set containing more than 11 thousand bathroom images, specially created for this study. The “HotelBath” data set was shared also with the community with this study. Four different image sizes were taken into consideration: 128, 256, 512 and 1024 pixels in both directions. The classification performances of the models were measured with several metrics. Both algorithms showed very attractive performances even with many combinations of hyper-parameters. They can classify bathroom images with very high accuracy. Suh that the top algorithm achieved an accuracy of 92.4% and an AUC (area under the curve) score of 0.967. In addition, other metrics also proved the success of the algorithm. The proposed method can allow the rapid, accurate and automatic detection of such undesired circumstances in hotel bathrooms from images. Such a detection system can allow hotel management to take necessary actions quickly to remedy such unsatisfactory cases.
This study was presented at the 1st International Conference on Scientific and Academic Research ICSAR 2022
Otel banyoları müşteri memnuniyeti açısından en önemli ve şikayetlerin en çok bildirildiği yerlerden biridir. Konuklar, deneyimlerini paylaşmak için otelleri derecelendirir, yorum yapar ve olumlu ya da olumsuz puanlarının resimlerini paylaşır. Konukların paylaştığı oda görsellerinin önemli bir kısmı banyolarla ilgilidir. Konuklar, banyolardan memnun olup olmadıklarını yorumlarında resimlerle kanıtlama eğilimindedirler. Bu olumlu ya da olumsuz yorum ve görseller potansiyel misafirleri etkileme gücüne sahiptir.
Bu çalışmada, görüntülerin analizinden otel banyolarını memnuniyet verici (iyi) veya mutsuz edici (kirlilik, eksiklik, arıza gibi kusurlar olduğunda kötü) olarak sınıflandırmak için, bir derin öğrenme algoritmasının iki farklı versiyonu tasarlanmıştır. İki model arasında en iyi performansı gösteren model, bir dizi kapsamlı deneysel çalışma sonucunda belirlenmiştir. Modeller, bu çalışma için özel olarak oluşturulmuş 11 binden fazla banyo görüntüsü içeren bir veri seti ile 5 hiper parametre setinin 144 kombinasyonunun her biri için eğitildi. Bu çalışma ile “HotelBath” veri seti de toplumla paylaşıldı. Her iki yönde 128, 256, 512 ve 1024 piksel olmak üzere dört farklı görüntü boyutu dikkate alındı. Modellerin sınıflandırma performansları çeşitli metriklerle ölçüldü. Her iki algoritma da birçok hiper parametre kombinasyonunda bile çok çekici performanslar gösterdi. Algoritmaların, banyo görüntülerini çok yüksek doğrulukla sınıflandırabildiği görüldü. Öyle ki, en başarılı algoritma %92,4'lük bir doğruluk ve 0,967'lik bir AUC (eğri altındaki alan) puanı elde etti. Ayrıca diğer metrikler de algoritmanın başarısını kanıtladı. Önerilen yöntem, otel banyolarındaki bu tür istenmeyen durumların görüntülerden hızlı, doğru ve otomatik olarak tespit edilmesini sağlayabilir. Böyle bir tespit sistemi, otel yönetiminin, tatminsizlik yaratan durumları düzeltmek için gerekli önlemleri hızla almasına olanak sağlayabilir.
Primary Language | English |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Publication Date | December 31, 2022 |
Submission Date | December 9, 2022 |
Published in Issue | Year 2022 Volume: 14 Issue: 3 |
All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.