Effect of Process Parameters on the Metallurgical Properties of a Boron-Added Cast Austenitic Steel Designed for Special Purposes
Yıl 2024,
Cilt: 16 Sayı: 1, 93 - 105, 31.01.2024
Ersel Aydın
,
Fikri Erdem Şeşen
,
Selim Coşkun
Cevat Fahir Arısoy
Öz
A new kind of boron-added cast austenitic steel which also contained chromium, molybdenum and manganese was manufactured via vacuum induction melting followed by casting procedure. Solution annealing heat treatment was performed at three different temperatures for three different times to dissolve eutectic M2C carbides in austenitic matrix. All of the samples were rapid-cooled in oil medium after the solution annealing heat treatment. Aging treatments were carried out after solution annealing heat treatment performed at 1250 °C for 24 hours. Hardness value was decreased after solution annealing performed at 1250 °C for 24 hours. Transformation of M2C carbide with a hexagonal lattice into Fe-rich M6C carbide with a face-centered cubic lattice and formation of precipitates occurred as a result of aging performed at 700 and 800 °C. Sub-micron sized Cr23C6 carbides and Mo2BC precipitates were formed and hardness value was increased after aging performed at 700 °C. Nano-sized Cr23C6 carbides, Mo2B borides and Cr7BC4 precipitates were formed and hardness value was higher after aging performed at 800 °C. An optical light microscope was utilized to characterize solution annealing treatments and to perform grain size measurements. A scanning electron microscope was used to identify carbide types and carbide transformation during aging.
Etik Beyan
This manuscript has been originated from the MSc thesis of the first author.
Destekleyen Kurum
This work was financially supported by Scientific Research and Project Unit of Istanbul Technical University.
Kaynakça
- Asahi, H. (2002). Effects of Mo addition and austenitizing temperature on hardenability of low alloy B-added steels. ISIJ International, 42(10), 1150-1155.
- ASTM (2021). E112-13, Standard test methods for determining average grain size.
- ASTM (2023). E92-23, Standard test methods for Vickers hardness and Knoop hardness of metallic materials.
- Balluffi, R. W. & Mehl, R. F. (1982). Grain boundary diffusion mechanisms in metals. Metallurgical Transactions A, 13(12), 2069-2095.
- Banerji, S. K. & Morral, J. E. (1980). Boron in austenitic stainless steels. Warrendale: The Metallurgical Society of AIME.
- Bhadeshia, H. K. D. H. & Honeycombe, R. W. K. (2006). Steels: Microstructure and Properties (Third Edition). Elsevier.
- Bialobrzeska, B. (2021). Effect of alloying additives and microadditives on hardenability increase caused by action of boron. Metals, 11, 589.
- Bin, Z., Yu, S., Jun, C. & Zhen-shan, C. (2011). Breakdown behavior of eutectic carbide in high speed steel during hot compression. Journal of Iron and Steel Research International, 18(1), 41-48.
- British Standard (2000). BS EN 10020:2000, Definition and classification grades of steel.
- Chaus, A. S., Chovanec, J. & Legerska, M. (2006). Development of high-speed steels for cast metal-cutting tools. Solid State Phenomena, 113, 559-564.
- Chen, L., Pei, J., Li, F., Zhang, Y., Wang, M. & Ma, X. (2016). Decomposition reaction of metastable M2C carbide in a multi-component semi-high-speed steel. Metallurgical and Materials Transactions A, 47(A), 5662-5669.
- Çarboğa, C. (2010). Düşük karbonlu çeliklere bor ilavesinin mikroyapı ve mekanik özellikler üzerine etkisi, PhD Thesis, Gazi University, Ankara (in Turkish language).
- Düzcükoğlu, H. & Çetintürk, S. (2015). Effect of boron addition on mechanical properties of 60SiCr7 steel. International Journal of Materials, Mechanics and Manufacturing, 3(2), 117-120.
- Godec, M., Pirtovsek, T. V., Batic, B. S., McGuiness, P., Burja, J. & Podgornik, B. (2015). Surface and bulk carbide transformations in high-speed steel. Scientific Reports, 1(11), DOI: 10.1038/srep16202.
- Han, F., Hwang, B., Suh, D., Wang, Z., Lee, D. & Kim, S. J. (2008). Effect of molybdenum and chromium on hardenability of low-carbon boron-added steels. Metals and Materials International, 14(6), 667-672.
- Jin, S., Tao, N., Marthinsen, K. & Li, Y. (2015). Deformation of an Al-7Mg alloy with extensive structural micro-segregations during dynamic plastic deformation. Materials Science and Engineering A, 628, 160-167.
- Llewellyn, D. T. & Hudd, R. C. (2004). Steels: Metallurgy and applications (Third Edition). Butterworth & Heinemann.
- Mendez, J., Ghoreshy, M., Mackay, W. B. F., Smith, T. J. N. & Smith, R. W. (2004). Weldability of austenitic manganese steel. Journal of Materials Processing Technology, 153-154, 596-602.
- Okamoto, H. (2004). Boron-iron. Journal of Phase Equilibria and Diffusion, 25(3), 297-298.
- Padilha, A. F. & Rios, P. R. (2002). Decomposition of austenite in austenitic stainless steels. ISIJ International, 42(4), 325-337.
- Pitsch, W. & Sauthoff, G. (1992). A6: Kinetics and morphology of steel constituents, in: Steel – A Handbook for Materials Research and Engineering, Vol.1: Fundamentals. Springer-Verlag.
- Putatunda, K. S., Jianghuai, Y. & Gundlach B. R. (2005). Development of austenitic structural steel. Materials and Design, 26, 534-544.
- Sharma, M., Ortlepp, I. & Bleck, W. (2019). Boron in heat-treatable steels: A review. Steel Research International, 90, 1900133.
- Suskia, C. A. & Oliveira, C. A. S. (2013). Effects of austenitization temperature on the microstructure of 15BCr30 and PL22 boron steels, Materials Research, 16(4), 803-810.
- Totten, G. E. (2007). Steel heat treatment handbook: Metallurgy and technologies (Second Edition). CRC Press.
- Zhou, X. F., Fang, F., Jiang, J. Q., Zhu, W. L. & Xu, H. X. (2012). Study on decomposition behaviour of M2C eutectic carbide in high speed steel. Materials Science and Technology, 28(12), 1499-1504.
Özel Amaçlara Yönelik Tasarlanmış Bor Katkılı bir Dökme Ostenitli Çeliğin Metalurjik Özelliklerine İşlem Parametrelerinin Etkisi
Yıl 2024,
Cilt: 16 Sayı: 1, 93 - 105, 31.01.2024
Ersel Aydın
,
Fikri Erdem Şeşen
,
Selim Coşkun
Cevat Fahir Arısoy
Öz
Yeni bir tür bor katkılı, aynı zamanda krom, molibden ve manganez içeren, dökme ostenitli çelik vakum indüksiyon ergitmenin ardından döküm yoluyla üretilmiştir. Ötektik M2C karbürlerini ostenitli matriks içerisinde çözündürmek amacıyla üç farklı sıcaklıkta üç farklı süreyle çözeltiye alma ısıl işlemi uygulanmıştır. Çözeltiye alma ısıl işleminin ardından numunelerin tümü yağ ortamında hızlı soğutulmuştur. 1250 °C sıcaklıkta 24 saat süreyle uygulanmış çözeltiye alma ısıl işleminin ardından yaşlandırma işlemleri yapılmıştır. 1250 °C sıcaklıkta 24 saat süreyle uygulanmış çözeltiye alma işlemi sonucu sertlik değeri düşmüştür. 700 ve 800 °C sıcaklıklarda uygulanan yaşlandırma işlemleri sonucu hegzagonal kafes yapısındaki M2C karbürünün yüzey merkezli kübik kafes yapısındaki demirce zengin M6C karbürüne dönüşümü ve çökelti oluşumu meydana gelmiştir. 700 °C sıcaklıkta yapılan yaşlandırma işlemi sonucunda mikron altı boyutta Cr23C6 karbürleri ve Mo2BC çökeltileri oluşmuş ve sertlik değeri yükselmiştir. 800 °C sıcaklıkta yapılan yaşlandırma işlemi sonucunda da nano boyutta Cr23C6 karbürleri, Mo2B borürleri ve Cr7BC4 çökeltileri oluşmuş ve sertlik değeri daha fazla yükselmiştir. Çözeltiye alma işlemlerinin karakterize edilmesi ve tane sınırı ölçümlerinin yapılması amacıyla bir ışık mikroskobu kullanılmıştır. Karbür tiplerinin ve yaşlandırma sırasında meydana gelen karbür dönüşümünün tanımlanması amacıyla da bir taramalı elektron mikroskobu çalıştırılmıştır.
Etik Beyan
Bu metin, birinci yazarın Yüksek Lisans tez çalışmasından üretilmiştir.
Destekleyen Kurum
İstanbul Teknik Üniversitesi Bilimsel Araştırmalar ve Proje Birimi tarafından maddi olarak desteklenmiştir.
Kaynakça
- Asahi, H. (2002). Effects of Mo addition and austenitizing temperature on hardenability of low alloy B-added steels. ISIJ International, 42(10), 1150-1155.
- ASTM (2021). E112-13, Standard test methods for determining average grain size.
- ASTM (2023). E92-23, Standard test methods for Vickers hardness and Knoop hardness of metallic materials.
- Balluffi, R. W. & Mehl, R. F. (1982). Grain boundary diffusion mechanisms in metals. Metallurgical Transactions A, 13(12), 2069-2095.
- Banerji, S. K. & Morral, J. E. (1980). Boron in austenitic stainless steels. Warrendale: The Metallurgical Society of AIME.
- Bhadeshia, H. K. D. H. & Honeycombe, R. W. K. (2006). Steels: Microstructure and Properties (Third Edition). Elsevier.
- Bialobrzeska, B. (2021). Effect of alloying additives and microadditives on hardenability increase caused by action of boron. Metals, 11, 589.
- Bin, Z., Yu, S., Jun, C. & Zhen-shan, C. (2011). Breakdown behavior of eutectic carbide in high speed steel during hot compression. Journal of Iron and Steel Research International, 18(1), 41-48.
- British Standard (2000). BS EN 10020:2000, Definition and classification grades of steel.
- Chaus, A. S., Chovanec, J. & Legerska, M. (2006). Development of high-speed steels for cast metal-cutting tools. Solid State Phenomena, 113, 559-564.
- Chen, L., Pei, J., Li, F., Zhang, Y., Wang, M. & Ma, X. (2016). Decomposition reaction of metastable M2C carbide in a multi-component semi-high-speed steel. Metallurgical and Materials Transactions A, 47(A), 5662-5669.
- Çarboğa, C. (2010). Düşük karbonlu çeliklere bor ilavesinin mikroyapı ve mekanik özellikler üzerine etkisi, PhD Thesis, Gazi University, Ankara (in Turkish language).
- Düzcükoğlu, H. & Çetintürk, S. (2015). Effect of boron addition on mechanical properties of 60SiCr7 steel. International Journal of Materials, Mechanics and Manufacturing, 3(2), 117-120.
- Godec, M., Pirtovsek, T. V., Batic, B. S., McGuiness, P., Burja, J. & Podgornik, B. (2015). Surface and bulk carbide transformations in high-speed steel. Scientific Reports, 1(11), DOI: 10.1038/srep16202.
- Han, F., Hwang, B., Suh, D., Wang, Z., Lee, D. & Kim, S. J. (2008). Effect of molybdenum and chromium on hardenability of low-carbon boron-added steels. Metals and Materials International, 14(6), 667-672.
- Jin, S., Tao, N., Marthinsen, K. & Li, Y. (2015). Deformation of an Al-7Mg alloy with extensive structural micro-segregations during dynamic plastic deformation. Materials Science and Engineering A, 628, 160-167.
- Llewellyn, D. T. & Hudd, R. C. (2004). Steels: Metallurgy and applications (Third Edition). Butterworth & Heinemann.
- Mendez, J., Ghoreshy, M., Mackay, W. B. F., Smith, T. J. N. & Smith, R. W. (2004). Weldability of austenitic manganese steel. Journal of Materials Processing Technology, 153-154, 596-602.
- Okamoto, H. (2004). Boron-iron. Journal of Phase Equilibria and Diffusion, 25(3), 297-298.
- Padilha, A. F. & Rios, P. R. (2002). Decomposition of austenite in austenitic stainless steels. ISIJ International, 42(4), 325-337.
- Pitsch, W. & Sauthoff, G. (1992). A6: Kinetics and morphology of steel constituents, in: Steel – A Handbook for Materials Research and Engineering, Vol.1: Fundamentals. Springer-Verlag.
- Putatunda, K. S., Jianghuai, Y. & Gundlach B. R. (2005). Development of austenitic structural steel. Materials and Design, 26, 534-544.
- Sharma, M., Ortlepp, I. & Bleck, W. (2019). Boron in heat-treatable steels: A review. Steel Research International, 90, 1900133.
- Suskia, C. A. & Oliveira, C. A. S. (2013). Effects of austenitization temperature on the microstructure of 15BCr30 and PL22 boron steels, Materials Research, 16(4), 803-810.
- Totten, G. E. (2007). Steel heat treatment handbook: Metallurgy and technologies (Second Edition). CRC Press.
- Zhou, X. F., Fang, F., Jiang, J. Q., Zhu, W. L. & Xu, H. X. (2012). Study on decomposition behaviour of M2C eutectic carbide in high speed steel. Materials Science and Technology, 28(12), 1499-1504.