Research Article
BibTex RIS Cite

Müsilaj ve PDMS ile Geliştirilen Çift Katmanlı Alternatif Gıda Kaplamaları

Year 2024, Volume: 16 Issue: 1, 227 - 235, 31.01.2024
https://doi.org/10.29137/umagd.1403757

Abstract

Son yıllarda, malzeme bilimindeki ilerlemelerle birlikte çevre, sağlık ve gıda sektörlerinde karşılaşılan sorunlara doğal çözümler arayışı artmıştır. Atık plastiklerin çevresel kirlilik yaratması ve toksik olmaları büyük endişe kaynağıdır. Bu nedenle, doğal polimer filmlerin geliştirilmesi, özellikle gıda endüstrisinde plastiklerin yerini alabilecek bir alternatif sunar. Bu çalışmada, omega-3, protein, yağ ve lif açısından zengin chia tohumundan elde edilen müsilaj ve polidimetilsiloksan (PDMS) filmlerinin kombinasyonuyla çift katmanlı filmler üretilmiştir. Filmlerin fizikokimyasal özellikleri Fourier dönüşümü kızılötesi spektroskopisi, termogravimetrik analiz, taramalı elektron mikroskobu ve enerji dağılımlı X-ışınları spektroskopisi gibi yöntemlerle karakterize edilmiştir. Son olarak, filmlerin su temas açısı ölçülmüş olup, çift katmanlı filmlerin iç tarafının hidrofilik dış tarafının ise hidrofobik özelliklere sahip olduğu gösterilmiştir. Bu çalışma, çift katmanlı müsilaj-PDMS filmlerinin potansiyel olarak gıda paketleme uygulamalarında kullanılabilir bir alternatif ürün olabileceğini ortaya koymaktadır.

References

  • Ayerza, R., Coates, W. & Lauria, M. (2002). Chia seed (Salvia hispanica L.) as an omega-3 fatty acid source for broilers: influence on fatty acid composition, cholesterol and fat content of white and dark meats, growth performance, and sensory characteristics. Poultry Science, 81(6), 826-837.
  • Azwa, Z., Yousif, B., Manalo, A. & Karunasena, W. (2013). A review on the degradability of polymeric composites based on natural fibres. Materials & Design, 47, 424-442.
  • Bilican, I. (2021). Cascaded contraction-expansion channels for bacteria separation from RBCs using viscoelastic microfluidics. Journal of Chromatography A, 1652, 462366.
  • Bilican, I. (2023). Preparation and Properties of Novel Mucilage Composite Films Reinforced with Polydimethylsiloxane. Macromolecular Materials and Engineering, 2300317 (Early Access).
  • Bilican, I., Bahadir, T., Bilgin, K. & Guler, M. T. (2020). Alternative screening method for analyzing the water samples through an electrical microfluidics chip with classical microbiological assay comparison of P. aeruginosa. Talanta, 219, 121293.
  • Bodas, D. & Khan-Malek, C. (2006). Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments. Microelectronic engineering, 83(4-9), 1277-1279.
  • Camino, G., Lomakin, S. & Lazzari, M. (2001). Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymer, 42(6), 2395-2402.
  • Camino, G., Lomakin, S. & Lageard, M. (2002). Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms. Polymer, 43(7), 2011-2015.
  • Capitani, M. I., Matus-Basto, A., Ruiz-Ruiz, J., Santiago-García, J., Betancur-Ancona, D., Nolasco, S. M., Tomás, M. C. & Segura-Campos, M. (2016). Characterization of biodegradable films based on Salvia hispanica L. protein and mucilage. Food and Bioprocess Technology, 9, 1276-1286.
  • Capitani, M. I., Nolasco, S. M. & Tomás, M. C. (2016). Stability of oil-in-water (O/W) emulsions with chia (Salvia hispanica L.) mucilage. Food Hydrocolloids, 61, 537-546.
  • Cardenas, G. & Miranda, S. P. (2004). FTIR and TGA studies of chitosan composite films. Journal of the Chilean Chemical Society, 49(4), 291-295.
  • Cerqueira, M. A., Souza, B. W., Teixeira, J. A. & Vicente, A. A. (2012). Effect of glycerol and corn oil on physicochemical properties of polysaccharide films–A comparative study. Food Hydrocolloids, 27(1), 175-184.
  • Cervera, M. F., Karjalainen, M., Airaksinen, S., Rantanen, J., Krogars, K., Heinämäki, J., Colarte, A. I. & Yliruusi, J. (2004). Physical stability and moisture sorption of aqueous chitosan–amylose starch films plasticized with polyols. European Journal of Pharmaceutics and Biopharmaceutics, 58(1), 69-76.
  • Fakhouri, F. M., Martelli, S. M., Caon, T., Velasco, J. I. & Mei, L. H. I. (2015). Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biology and Technology, 109, 57-64.
  • Fang, W., Zeng, X., Lai, X., Li, H., Chen, W. & Zhang, Y. (2015). Thermal degradation mechanism of addition-cure liquid silicone rubber with urea-containing silane. Thermochimica Acta, 605, 28-36.
  • Ghaderi, M., Mousavi, M., Yousefi, H. & Labbafi, M. (2014). All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydrate Polymers, 104, 59-65.
  • González-Rivera, J., Iglio, R., Barillaro, G., Duce, C. & Tinè, M. R. (2018). Structural and thermoanalytical characterization of 3D porous PDMS foam materials: the effect of impurities derived from a sugar templating process. Polymers, 10(6), 616.
  • Guiotto, E. N., Capitani, M. I., Nolasco, S. M. & Tomás, M. C. (2016). Stability of oil‐in‐water emulsions with sunflower (Helianthus annuus L.) and chia (Salvia hispanica L.) by‐products. Journal of the American Oil Chemists' Society, 93(1), 133-143.
  • Guler, M. T. & Bilican, İ. (2020). A new method for the measurement of soft material thickness. Turkish Journal of Engineering, 4(2), 97-103.
  • Hunt, R. H. & Tytgat, G. (2012). Helicobacter pylori: basic mechanisms to clinical cure: Springer Science & Business Media.
  • Jani, G. K., Shah, D. P., Prajapati, V. D. & Jain, V. C. (2009). Gums and mucilages: versatile excipients for pharmaceutical formulations. Asian J Pharm Sci, 4(5), 309-323.
  • Jouki, M., Tabatabaei Yazdi, F., Mortazavi, S. A. & Koocheki, A. (2013). Physical, barrier and antioxidant properties of a novel plasticized edible film from quince seed mucilage. International Journal of Biological Macromolecules, 62, 500-507.
  • Khazaei, N., Esmaiili, M., Djomeh, Z. E., Ghasemlou, M. & Jouki, M. (2014). Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydrate Polymers, 102, 199-206.
  • Kim, H. T. & Jeong, O. C. (2011). PDMS surface modification using atmospheric pressure plasma. Microelectronic engineering, 88(8), 2281-2285.
  • Koc, B., Akyuz, L., Cakmak, Y. S., Sargin, I., Salaberria, A. M., Labidi, J., Ilk, S., Cekic, F. O., Akata, I. & Kaya, M. (2020). Production and characterization of chitosan-fungal extract films. Food Bioscience, 35, 100545.
  • Li, Z. & Rabnawaz, M. (2018). Fabrication of Food-Safe Water-Resistant Paper Coatings Using a Melamine Primer and Polysiloxane Outer Layer. ACS Omega, 3(9), 11909-11916.
  • Lin, K.-Y., Daniel, J. R. & Whistler, R. L. (1994). Structure of chia seed polysaccharide exudate. Carbohydrate Polymers, 23(1), 13-18.
  • Lu, N., Zhang, W., Weng, Y., Chen, X., Cheng, Y. & Zhou, P. (2016). Fabrication of PDMS surfaces with micro patterns and the effect of pattern sizes on bacteria adhesion. Food Control, 68, 344-351.
  • Malekfar, R., Nikbakht, A., Abbasian, S., Sadeghi, F. & Mozaffari, M. (2010). Evaluation of tomato juice quality using surface enhanced Raman spectroscopy. Acta Physica Polonica A, 117(6), 971-973.
  • Mujtaba, M., Akyuz, L., Koc, B., Kaya, M., Ilk, S., Cansaran-Duman, D., Martinez, A. S., Cakmak, Y. S., Labidi, J. & Boufi, S. (2019). Novel, multifunctional mucilage composite films incorporated with cellulose nanofibers. Food Hydrocolloids, 89, 20-28.
  • Mujtaba, M., Koc, B., Salaberria, A. M., Ilk, S., Cansaran-Duman, D., Akyuz, L., Cakmak, Y. S., Kaya, M., Khawar, K. M., Labidi, J. & Boufi, S. (2019). Production of novel chia-mucilage nanocomposite films with starch nanocrystals; An inclusive biological and physicochemical perspective. International Journal of Biological Macromolecules, 133, 663-673.
  • Nazir, S. & Wani, I. A. (2022). Fractionation and characterization of mucilage from Basil (Ocimum basilicum L.) seed. Journal of Applied Research on Medicinal and Aromatic Plants, 31, 100429.
  • Reyes-Caudillo, E., Tecante, A. & Valdivia-López, M. A. (2008). Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chemistry, 107(2), 656-663.
  • Rodkate, N., Wichai, U., Boontha, B. & Rutnakornpituk, M. (2010). Semi-interpenetrating polymer network hydrogels between polydimethylsiloxane/polyethylene glycol and chitosan. Carbohydrate Polymers, 81(3), 617-625.
  • Roy, N., Saha, N., Kitano, T. & Saha, P. (2012). Biodegradation of PVP–CMC hydrogel film: A useful food packaging material. Carbohydrate Polymers, 89(2), 346-353.
  • Siripatrawan, U. & Kaewklin, P. (2018). Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocolloids, 84, 125-134.
  • Sun, J., Huang, Y., Cao, H. & Gong, G. (2004). Effects of ambient-temperature curing agents on the thermal stability of poly (methylphenylsiloxane). Polymer degradation and stability, 85(1), 725-731.
  • Tantiwatcharothai, S. & Prachayawarakorn, J. (2019). Characterization of an antibacterial wound dressing from basil seed (Ocimum basilicum L.) mucilage-ZnO nanocomposite. International journal of biological macromolecules, 135, 133-140.
  • Torun, I., Ruzi, M., Er, F. & Onses, M. S. (2019). Superhydrophobic coatings made from biocompatible polydimethylsiloxane and natural wax. Progress in Organic Coatings, 136, 105279.
  • Wolf, M. P., Salieb-Beugelaar, G. B. & Hunziker, P. (2018). PDMS with designer functionalities—Properties, modifications strategies, and applications. Progress in Polymer Science, 83, 97-134.
  • Zhan, X., Hu, G., Wagberg, T., Zhan, S., Xu, H. & Zhou, P. (2016). Electrochemical aptasensor for tetracycline using a screen-printed carbon electrode modified with an alginate film containing reduced graphene oxide and magnetite (Fe3O4) nanoparticles. Microchimica Acta, 183(2), 723-729.

Double-Layered Alternative Food Coatings Developed with Mucilage and PDMS

Year 2024, Volume: 16 Issue: 1, 227 - 235, 31.01.2024
https://doi.org/10.29137/umagd.1403757

Abstract

In recent years, in parallel with advancements in materials science, there has been a growing pursuit of natural solutions to address environmental, health, and food industry challenges. The environmental pollution and toxicity associated with waste plastics have raised significant concerns. Therefore, the development of natural polymer films, particularly those derived from chia seeds rich in omega-3, protein, oil, and fiber, presents an alternative that could replace plastics in the food industry. In this study, double-layer films were produced by combining mucilage extracted from chia seeds and polydimethylsiloxane (PDMS). The physicochemical properties of the films were characterized using methods such as Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Finally, the water contact angle of the films was measured, demonstrating that the inner side of the double-layer films is hydrophilic, while the outer side exhibits hydrophobic properties. This study suggests that dual-layer mucilage-PDMS films could be a potentially viable alternative in food packaging applications.

References

  • Ayerza, R., Coates, W. & Lauria, M. (2002). Chia seed (Salvia hispanica L.) as an omega-3 fatty acid source for broilers: influence on fatty acid composition, cholesterol and fat content of white and dark meats, growth performance, and sensory characteristics. Poultry Science, 81(6), 826-837.
  • Azwa, Z., Yousif, B., Manalo, A. & Karunasena, W. (2013). A review on the degradability of polymeric composites based on natural fibres. Materials & Design, 47, 424-442.
  • Bilican, I. (2021). Cascaded contraction-expansion channels for bacteria separation from RBCs using viscoelastic microfluidics. Journal of Chromatography A, 1652, 462366.
  • Bilican, I. (2023). Preparation and Properties of Novel Mucilage Composite Films Reinforced with Polydimethylsiloxane. Macromolecular Materials and Engineering, 2300317 (Early Access).
  • Bilican, I., Bahadir, T., Bilgin, K. & Guler, M. T. (2020). Alternative screening method for analyzing the water samples through an electrical microfluidics chip with classical microbiological assay comparison of P. aeruginosa. Talanta, 219, 121293.
  • Bodas, D. & Khan-Malek, C. (2006). Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments. Microelectronic engineering, 83(4-9), 1277-1279.
  • Camino, G., Lomakin, S. & Lazzari, M. (2001). Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymer, 42(6), 2395-2402.
  • Camino, G., Lomakin, S. & Lageard, M. (2002). Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms. Polymer, 43(7), 2011-2015.
  • Capitani, M. I., Matus-Basto, A., Ruiz-Ruiz, J., Santiago-García, J., Betancur-Ancona, D., Nolasco, S. M., Tomás, M. C. & Segura-Campos, M. (2016). Characterization of biodegradable films based on Salvia hispanica L. protein and mucilage. Food and Bioprocess Technology, 9, 1276-1286.
  • Capitani, M. I., Nolasco, S. M. & Tomás, M. C. (2016). Stability of oil-in-water (O/W) emulsions with chia (Salvia hispanica L.) mucilage. Food Hydrocolloids, 61, 537-546.
  • Cardenas, G. & Miranda, S. P. (2004). FTIR and TGA studies of chitosan composite films. Journal of the Chilean Chemical Society, 49(4), 291-295.
  • Cerqueira, M. A., Souza, B. W., Teixeira, J. A. & Vicente, A. A. (2012). Effect of glycerol and corn oil on physicochemical properties of polysaccharide films–A comparative study. Food Hydrocolloids, 27(1), 175-184.
  • Cervera, M. F., Karjalainen, M., Airaksinen, S., Rantanen, J., Krogars, K., Heinämäki, J., Colarte, A. I. & Yliruusi, J. (2004). Physical stability and moisture sorption of aqueous chitosan–amylose starch films plasticized with polyols. European Journal of Pharmaceutics and Biopharmaceutics, 58(1), 69-76.
  • Fakhouri, F. M., Martelli, S. M., Caon, T., Velasco, J. I. & Mei, L. H. I. (2015). Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biology and Technology, 109, 57-64.
  • Fang, W., Zeng, X., Lai, X., Li, H., Chen, W. & Zhang, Y. (2015). Thermal degradation mechanism of addition-cure liquid silicone rubber with urea-containing silane. Thermochimica Acta, 605, 28-36.
  • Ghaderi, M., Mousavi, M., Yousefi, H. & Labbafi, M. (2014). All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydrate Polymers, 104, 59-65.
  • González-Rivera, J., Iglio, R., Barillaro, G., Duce, C. & Tinè, M. R. (2018). Structural and thermoanalytical characterization of 3D porous PDMS foam materials: the effect of impurities derived from a sugar templating process. Polymers, 10(6), 616.
  • Guiotto, E. N., Capitani, M. I., Nolasco, S. M. & Tomás, M. C. (2016). Stability of oil‐in‐water emulsions with sunflower (Helianthus annuus L.) and chia (Salvia hispanica L.) by‐products. Journal of the American Oil Chemists' Society, 93(1), 133-143.
  • Guler, M. T. & Bilican, İ. (2020). A new method for the measurement of soft material thickness. Turkish Journal of Engineering, 4(2), 97-103.
  • Hunt, R. H. & Tytgat, G. (2012). Helicobacter pylori: basic mechanisms to clinical cure: Springer Science & Business Media.
  • Jani, G. K., Shah, D. P., Prajapati, V. D. & Jain, V. C. (2009). Gums and mucilages: versatile excipients for pharmaceutical formulations. Asian J Pharm Sci, 4(5), 309-323.
  • Jouki, M., Tabatabaei Yazdi, F., Mortazavi, S. A. & Koocheki, A. (2013). Physical, barrier and antioxidant properties of a novel plasticized edible film from quince seed mucilage. International Journal of Biological Macromolecules, 62, 500-507.
  • Khazaei, N., Esmaiili, M., Djomeh, Z. E., Ghasemlou, M. & Jouki, M. (2014). Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydrate Polymers, 102, 199-206.
  • Kim, H. T. & Jeong, O. C. (2011). PDMS surface modification using atmospheric pressure plasma. Microelectronic engineering, 88(8), 2281-2285.
  • Koc, B., Akyuz, L., Cakmak, Y. S., Sargin, I., Salaberria, A. M., Labidi, J., Ilk, S., Cekic, F. O., Akata, I. & Kaya, M. (2020). Production and characterization of chitosan-fungal extract films. Food Bioscience, 35, 100545.
  • Li, Z. & Rabnawaz, M. (2018). Fabrication of Food-Safe Water-Resistant Paper Coatings Using a Melamine Primer and Polysiloxane Outer Layer. ACS Omega, 3(9), 11909-11916.
  • Lin, K.-Y., Daniel, J. R. & Whistler, R. L. (1994). Structure of chia seed polysaccharide exudate. Carbohydrate Polymers, 23(1), 13-18.
  • Lu, N., Zhang, W., Weng, Y., Chen, X., Cheng, Y. & Zhou, P. (2016). Fabrication of PDMS surfaces with micro patterns and the effect of pattern sizes on bacteria adhesion. Food Control, 68, 344-351.
  • Malekfar, R., Nikbakht, A., Abbasian, S., Sadeghi, F. & Mozaffari, M. (2010). Evaluation of tomato juice quality using surface enhanced Raman spectroscopy. Acta Physica Polonica A, 117(6), 971-973.
  • Mujtaba, M., Akyuz, L., Koc, B., Kaya, M., Ilk, S., Cansaran-Duman, D., Martinez, A. S., Cakmak, Y. S., Labidi, J. & Boufi, S. (2019). Novel, multifunctional mucilage composite films incorporated with cellulose nanofibers. Food Hydrocolloids, 89, 20-28.
  • Mujtaba, M., Koc, B., Salaberria, A. M., Ilk, S., Cansaran-Duman, D., Akyuz, L., Cakmak, Y. S., Kaya, M., Khawar, K. M., Labidi, J. & Boufi, S. (2019). Production of novel chia-mucilage nanocomposite films with starch nanocrystals; An inclusive biological and physicochemical perspective. International Journal of Biological Macromolecules, 133, 663-673.
  • Nazir, S. & Wani, I. A. (2022). Fractionation and characterization of mucilage from Basil (Ocimum basilicum L.) seed. Journal of Applied Research on Medicinal and Aromatic Plants, 31, 100429.
  • Reyes-Caudillo, E., Tecante, A. & Valdivia-López, M. A. (2008). Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chemistry, 107(2), 656-663.
  • Rodkate, N., Wichai, U., Boontha, B. & Rutnakornpituk, M. (2010). Semi-interpenetrating polymer network hydrogels between polydimethylsiloxane/polyethylene glycol and chitosan. Carbohydrate Polymers, 81(3), 617-625.
  • Roy, N., Saha, N., Kitano, T. & Saha, P. (2012). Biodegradation of PVP–CMC hydrogel film: A useful food packaging material. Carbohydrate Polymers, 89(2), 346-353.
  • Siripatrawan, U. & Kaewklin, P. (2018). Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocolloids, 84, 125-134.
  • Sun, J., Huang, Y., Cao, H. & Gong, G. (2004). Effects of ambient-temperature curing agents on the thermal stability of poly (methylphenylsiloxane). Polymer degradation and stability, 85(1), 725-731.
  • Tantiwatcharothai, S. & Prachayawarakorn, J. (2019). Characterization of an antibacterial wound dressing from basil seed (Ocimum basilicum L.) mucilage-ZnO nanocomposite. International journal of biological macromolecules, 135, 133-140.
  • Torun, I., Ruzi, M., Er, F. & Onses, M. S. (2019). Superhydrophobic coatings made from biocompatible polydimethylsiloxane and natural wax. Progress in Organic Coatings, 136, 105279.
  • Wolf, M. P., Salieb-Beugelaar, G. B. & Hunziker, P. (2018). PDMS with designer functionalities—Properties, modifications strategies, and applications. Progress in Polymer Science, 83, 97-134.
  • Zhan, X., Hu, G., Wagberg, T., Zhan, S., Xu, H. & Zhou, P. (2016). Electrochemical aptasensor for tetracycline using a screen-printed carbon electrode modified with an alginate film containing reduced graphene oxide and magnetite (Fe3O4) nanoparticles. Microchimica Acta, 183(2), 723-729.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Biomaterial
Journal Section Articles
Authors

Behlül Koç Bilican 0000-0001-9943-771X

İsmail Bilican 0000-0002-4415-6803

Publication Date January 31, 2024
Submission Date December 12, 2023
Acceptance Date December 23, 2023
Published in Issue Year 2024 Volume: 16 Issue: 1

Cite

APA Koç Bilican, B., & Bilican, İ. (2024). Müsilaj ve PDMS ile Geliştirilen Çift Katmanlı Alternatif Gıda Kaplamaları. International Journal of Engineering Research and Development, 16(1), 227-235. https://doi.org/10.29137/umagd.1403757

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.