Sıcak Su Elde Edilmesinde Gravity-Film Isı Değiştiricisinin Etkisinin İncelenmesi
Yıl 2024,
Cilt: 16 Sayı: 2, 590 - 602, 30.06.2024
Gözde Ural
,
Hüsamettin Tan
,
Ali Erişen
Öz
Dünya genelinde en yüksek enerji harcanan sektör konutlarda farklı ihtiyaçlar doğrultusunda meydana gelmektedir. Evlerde, işyerlerinde vb. kanalizasyona atılan su ile enerji kayıpları yaşanmaktadır. Bu enerjinin kazanılması amacıyla bu çalışmada üç farklı sistem tasarımı yapılmıştır. Bunlar: elektrikli ısıtıcı ile sıcak su üretimi (M-1), elektrikli ısıtıcı-GFHE ile sıcaklık su üretimi (M-2) ve ısı pompası-GFHE ile sıcaklık su üretimi (M-3) şeklindedir. Sistemler için enerji denge bağıntıları ve ampirik bağıntılar kullanılarak analizler yapılmıştır. Elde edilen sonuçlar sistemlerin enerji tüketimi ve COP değeri olmak üzere karşılaştırılmıştır.
Sonuçlar en düşük enerji tüketimine sahip olan tasarım ısı pompası-GFHE ile sıcak su üretilen sistem olduğunu göstermiştir. Enerji tüketiminin %88-%90 oranında azaldığı ve COP değerinin 8.9-11.24 katına çıkmıştır. Tek başına elektrikli ısıtıcı kullanımının yüksek enerji tüketimi sebebiyle uygun olmadığı görülmüştür. GFHE kullanımının suyun ön ısıtılmasını sağlayarak sistem performansında önemli bir iyileştirme yaptığı belirlenmiştir.
Kaynakça
- Adhikari, P. (2017). Feasibility study of waste heat recovery from laundry facility Case study : Mr Washing Man Oy. Helsinki Metropolia University.
- Defra Report. (2008). Measurement of Domestic Hot Water Consumption in Dwellings.
- Dong, J., Zhang, Z., Yao, Y., Jiang, Y., & Lei, B. (2015). Experimental performance evaluation of a novel heat pump water heater assisted with shower drain water. Applied Energy, 154, 842–850. https://doi.org/10.1016/j.apenergy.2015.05.044
- Dubey, A. M., Kumar, S., & Agrawal, G. Das. (2014). Thermodynamic analysis of a transcritical CO2/propylene (R744-R1270) cascade system for cooling and heating applications. Energy Conversion and Management, 86, 774–783. https://doi.org/10.1016/j.enconman.2014.05.105
- Garcia, J. D. (2016). Characterization of greywater heat exchangers and the potential of implementation for energy savings [Kungliga Tekniska Högskolan]. https://doi.org/10.1051/e3sconf/20184500034
- Getu, H. M., & Bansal, P. K. (2008). Thermodynamic analysis of an R744-R717 cascade refrigeration system. International Journal of Refrigeration, 31(1), 45–54. https://doi.org/10.1016/j.ijrefrig.2007.06.014
- Gholamian, E., Hanafizadeh, P., & Ahmadi, P. (2018). Advanced exergy analysis of a carbon dioxide ammonia cascade refrigeration system. Applied Thermal Engineering, 137(March), 689–699. https://doi.org/10.1016/j.applthermaleng.2018.03.055
- Jain, V., Kachhwaha, S. S., & Sachdeva, G. (2013). Thermodynamic performance analysis of a vapor compression-absorption cascaded refrigeration system. Energy Conversion and Management, 75, 685–700. https://doi.org/10.1016/j.enconman.2013.08.024
- Khanlari, A., Sözen, A., Sahin, B., Di Nicola, G., & Afshari, F. (2020). Experimental investigation on using building shower drain water as a heat source for heat pump systems. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 00(00), 1–13. https://doi.org/10.1080/15567036.2020.1796845
- Klein, S. A. (2012). Engineering Equaiton Solver(EES) (9.0; p. 9.0). F-Chart Software.
- Manouchehri, R., & Collins, M. R. (2016). An experimental analysis of the impact of temperature on falling film drain water heat recovery system effectiveness. Energy and Buildings, 130(April), 1–7. https://doi.org/10.1016/j.enbuild.2016.08.031
- McNabola, A., & Shields, K. (2013). Efficient drain water heat recovery in horizontal domestic shower drains. Energy and Buildings, 59, 44–49. https://doi.org/10.1016/j.enbuild.2012.12.026
- Ramadan, M., Murr, R., Khaled, M., & Olabi, A. G. (2018). Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery. Energy, 149, 1010–1021. https://doi.org/10.1016/j.energy.2018.01.086
- Salama, M., & Sharqawy, M. H. (2020). Experimental investigation of the performance of a falling-film drain water heat recovery system. Applied Thermal Engineering, 179(February), 115712. https://doi.org/10.1016/j.applthermaleng.2020.115712
- Torras, S., Oliet, C., Rigola, J., & Oliva, A. (2016). Drain water heat recovery storage-type unit for residential housing. Applied Thermal Engineering, 103, 670–683. https://doi.org/10.1016/j.applthermaleng.2016.04.086
- Wallin, J., & Claesson, J. (2014). Analyzing the efficiency of a heat pump assisted drain water heat recovery system that uses a vertical inline heat exchanger. Sustainable Energy Technologies and Assessments, 8, 109–119. https://doi.org/10.1016/j.seta.2014.08.003
- Wang, H., Wang, Q., & Chen, G. (2013). Experimental performance analysis of an improved multifunctional heat pump system. Energy and Buildings, 62, 581–589. https://doi.org/10.1016/j.enbuild.2013.04.001
- Wu, Y., Jiang, Y., Gao, B., Liu, Z., & Liu, J. (2018). Thermodynamic analysis on an instantaneous water heating system of shower wastewater source heat pump. Journal of Water Reuse and Desalination, 8(3), 404–411. https://doi.org/10.2166/wrd.2017.194
- Yao, R., & Steemers, K. (2005). A method of formulating energy load profile for domestic buildings in the UK. Energy and Buildings, 37(6), 663–671. https://doi.org/10.1016/j.enbuild.2004.09.007
- Zaloum, C., Lafrance, M., & Gusdorf, J. (2007). Drain Water Heat Recovery Characterization and Modeling. In Sustainable Buildings and Communities. http://www.gfxtechnology.com/NRCAN-6_29_07.pdf
Investigation of The Effect of Gravity-Film Heat Exchanger on Hot Water Production
Yıl 2024,
Cilt: 16 Sayı: 2, 590 - 602, 30.06.2024
Gözde Ural
,
Hüsamettin Tan
,
Ali Erişen
Öz
The highest energy consumption sector in the worldwide varies according to different needs in residential areas. Energy losses occur in homes, workplaces, etc., due to water discharged into sewage systems. In this study, three different system designs were developed to reuse this energy: electric water heater for hot water production (M-1), electric water heater-GFHE for hot water production (M-2), and heat pump-GFHE for hot water production (M-3). Energy balance equations and empirical equations were used for the analysis of these systems. The results were compared in terms of energy consumption and COP value (Coefficient of Performance). The results showed that the design with the lowest energy consumption was the system that produced hot water with a heat pump-GFHE. Energy consumption decreased by approximately 88% to 90%, and the COP value increased by a factor of 8.9 to 11.24. The use of an electric water heater alone was seen as unsuitable due to its high energy consumption. It was determined that the use of GFHE for preheating water provided a significant improvement in system performance.
Kaynakça
- Adhikari, P. (2017). Feasibility study of waste heat recovery from laundry facility Case study : Mr Washing Man Oy. Helsinki Metropolia University.
- Defra Report. (2008). Measurement of Domestic Hot Water Consumption in Dwellings.
- Dong, J., Zhang, Z., Yao, Y., Jiang, Y., & Lei, B. (2015). Experimental performance evaluation of a novel heat pump water heater assisted with shower drain water. Applied Energy, 154, 842–850. https://doi.org/10.1016/j.apenergy.2015.05.044
- Dubey, A. M., Kumar, S., & Agrawal, G. Das. (2014). Thermodynamic analysis of a transcritical CO2/propylene (R744-R1270) cascade system for cooling and heating applications. Energy Conversion and Management, 86, 774–783. https://doi.org/10.1016/j.enconman.2014.05.105
- Garcia, J. D. (2016). Characterization of greywater heat exchangers and the potential of implementation for energy savings [Kungliga Tekniska Högskolan]. https://doi.org/10.1051/e3sconf/20184500034
- Getu, H. M., & Bansal, P. K. (2008). Thermodynamic analysis of an R744-R717 cascade refrigeration system. International Journal of Refrigeration, 31(1), 45–54. https://doi.org/10.1016/j.ijrefrig.2007.06.014
- Gholamian, E., Hanafizadeh, P., & Ahmadi, P. (2018). Advanced exergy analysis of a carbon dioxide ammonia cascade refrigeration system. Applied Thermal Engineering, 137(March), 689–699. https://doi.org/10.1016/j.applthermaleng.2018.03.055
- Jain, V., Kachhwaha, S. S., & Sachdeva, G. (2013). Thermodynamic performance analysis of a vapor compression-absorption cascaded refrigeration system. Energy Conversion and Management, 75, 685–700. https://doi.org/10.1016/j.enconman.2013.08.024
- Khanlari, A., Sözen, A., Sahin, B., Di Nicola, G., & Afshari, F. (2020). Experimental investigation on using building shower drain water as a heat source for heat pump systems. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 00(00), 1–13. https://doi.org/10.1080/15567036.2020.1796845
- Klein, S. A. (2012). Engineering Equaiton Solver(EES) (9.0; p. 9.0). F-Chart Software.
- Manouchehri, R., & Collins, M. R. (2016). An experimental analysis of the impact of temperature on falling film drain water heat recovery system effectiveness. Energy and Buildings, 130(April), 1–7. https://doi.org/10.1016/j.enbuild.2016.08.031
- McNabola, A., & Shields, K. (2013). Efficient drain water heat recovery in horizontal domestic shower drains. Energy and Buildings, 59, 44–49. https://doi.org/10.1016/j.enbuild.2012.12.026
- Ramadan, M., Murr, R., Khaled, M., & Olabi, A. G. (2018). Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery. Energy, 149, 1010–1021. https://doi.org/10.1016/j.energy.2018.01.086
- Salama, M., & Sharqawy, M. H. (2020). Experimental investigation of the performance of a falling-film drain water heat recovery system. Applied Thermal Engineering, 179(February), 115712. https://doi.org/10.1016/j.applthermaleng.2020.115712
- Torras, S., Oliet, C., Rigola, J., & Oliva, A. (2016). Drain water heat recovery storage-type unit for residential housing. Applied Thermal Engineering, 103, 670–683. https://doi.org/10.1016/j.applthermaleng.2016.04.086
- Wallin, J., & Claesson, J. (2014). Analyzing the efficiency of a heat pump assisted drain water heat recovery system that uses a vertical inline heat exchanger. Sustainable Energy Technologies and Assessments, 8, 109–119. https://doi.org/10.1016/j.seta.2014.08.003
- Wang, H., Wang, Q., & Chen, G. (2013). Experimental performance analysis of an improved multifunctional heat pump system. Energy and Buildings, 62, 581–589. https://doi.org/10.1016/j.enbuild.2013.04.001
- Wu, Y., Jiang, Y., Gao, B., Liu, Z., & Liu, J. (2018). Thermodynamic analysis on an instantaneous water heating system of shower wastewater source heat pump. Journal of Water Reuse and Desalination, 8(3), 404–411. https://doi.org/10.2166/wrd.2017.194
- Yao, R., & Steemers, K. (2005). A method of formulating energy load profile for domestic buildings in the UK. Energy and Buildings, 37(6), 663–671. https://doi.org/10.1016/j.enbuild.2004.09.007
- Zaloum, C., Lafrance, M., & Gusdorf, J. (2007). Drain Water Heat Recovery Characterization and Modeling. In Sustainable Buildings and Communities. http://www.gfxtechnology.com/NRCAN-6_29_07.pdf