Research Article
BibTex RIS Cite

LiDAR Tabanlı SLAM: LeGo-LOAM ve HDL-Graph SLAM ile Karşılaştırmalı Bir Değerlendirme

Year 2025, Volume: 17 Issue: 1, 55 - 64

Abstract

Hızlı gelişmelerin yaşandığı eşzamanlı konum belirleme ve harita oluşturma (SLAM), araçların navigasyon ve algılama yeteneklerinin geliştirilmesinde önemli etkiye sahip olan ve karmaşık ortamlarda güvenli çalışmalarını sağlayan bir araştırma alanıdır. Bu çalışma, SLAM'deki son gelişmelere kapsamlı genel bakış sunmakta ve yaygın olarak kullanılan iki SLAM yönteminin karşılaştırmalı bir değerlendirmesini yapmaktadır. SLAM algoritmalarını değerlendirmek için en popüler kıyaslama veri kümelerinden biri olan KITTI veri kümesi kullanılmaktadır. Değerlendirme iki temel ölçüme odaklanmaktadır: Mutlak yörünge hatası (ATE) ve poz tahmininin zaman içindeki doğruluğu ve tutarlılığı hakkında değerli bilgiler sağlayan göreceli poz hatası (RPE). ATE, tahmin edilen yörüngeler ile yer referans verileri arasındaki sapmayı ölçerek SLAM sisteminin küresel doğruluğuna ışık tutarken RPE, yerel hatayı ve sistemin sıralı çerçeveler içinde güvenilir poz tahminlerini sürdürme yeteneğini inceler. Bu çalışma, her tekniğin avantajları, ayırt edici özellikleri ve performans özellikleri hakkında kapsamlı bir tartışma sağlanmakta ve böylece ilgili alanda gelecekteki araştırmaları ilerletmek için bilgiler sunulmaktadır.

References

  • Cadena C., Carlone L., Carrillo H., Latif Y., Scaramuzza D., Neira J., Reid I., Leonard J. J. (2016). Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on Robotics, 32(6), 1309-1332. doi: 10.1109/TRO.2016.2624754
  • Campos, C., Elvira, R., Rodríguez, J..J..G., Montiel, J..J..M., Tardós, J..D. (2021). ORB-SLAM3: An accurate open-source library for visual, visual–inertial, and multimap SLAM. IEEE Transactions on Robotics, 37(6), 1874-1890. doi: 10.1109/tro.2021.3075644
  • Cheng, J., Zhang, L., Chen, Q., Hu, X., Cai, J. (2022). A review of visual SLAM methods for autonomous driving vehicles. Engineering Applications of Artificial Intelligence, 114, 104992. doi: 10.1016/j.engappai.2022.104992
  • Dellaert, F., Kaess, M. (2006). Square Root SAM: Simultaneous localization and mapping via square root information smoothing. TheInternational Journal of Robotics Research, 25(12), 1181-1203. doi: 10.1177/0278364906072768
  • Dissanayake, M. W. M. G., Newman, P., Clark, S., Durrant-Whyte, H. F., Csorba, M. (2001). A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, 17(3), 229-241. doi:10.1109/70.938381
  • Gao, B., Lang, H., Ren, J. (2020). Stereo visual SLAM for autonomous vehicles: A review. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11-14 October 2020, pp. 1316-1322. doi:10.1109/SMC42975.2020.9283161
  • Geiger, A., Lenz, P., Urtasun, R. (2012). Are we ready for autonomous driving? The KITTI vision benchmark suite. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16-21 June 2012, pp. 3354-3361. doi:10.1109/CVPR.2012.6248074
  • Guclu, O., Can, A. B. (2019) Fast and effective loop closure detection to improve SLAM performance. Journal of Intelligent & Robotic Systems, 93, 495-517. doi: 10.1007/s10846-017-0718-z
  • HDL-Graph SLAM, https://github.com/koide3/hdl_graph_slam, (2023)
  • Hoshi, M., Hara, Y., Nakamura, S. (2022). Graph-based SLAM using architectural floor plans without loop closure. Advanced Robotics, 36(15), 715-723. doi: 10.1080/01691864.2022.2081513
  • Huang, L. (2021). Review on LiDAR-based SLAM techniques. 2021 International Conference on Signal Processing and Machine Learning (CONF-SPML), Stanford, CA, USA, 14-14 November 2021, pp. 163-168. doi: 10.1109/CONF-SPML54095.2021.00040
  • Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., Dellaert, F. (2011). ISAM2: Incremental smoothing and mapping using the Bayes tree. Teh International Journal of Robotics Research, 31(2), 216-235. doi: 10.1177/0278364911430419
  • Kim, A., Eustice, R. M. (2013). Perception-driven navigation: Active visual SLAM for robotic area coverage. 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 06-10 May 2013, pp. 3196-3203. doi: 10.1109/ICRA.2013.6631022
  • Kim, B., Kaess, M., Fletcher, L., Leonard, J., Bachrach, A., Roy, N., Teller, S. (2010). Multiple relative pose graphs for robust cooperative mapping. 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 03-07 May 2010, pp.3185-3192. doi: 10.1109/ROBOT.2010.5509154
  • Kim, C., Sakthivel, R., Chung, W..K. (2007). Unscented FastSLAM: A robust algorithm for the simultaneous localization and mapping problem. Proceedings 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10-14 April 2007, pp. 2439-2445. doi: 10.1109/ROBOT.2007.363685
  • Kim, P., Chen, J., Cho, Y. K. (2018). SLAM-driven robotic mapping and registration of 3D point clouds. Automation in Construction, 89, 38-48. doi: 10.1016/j.autcon.2018.01.009
  • KITTI Dataset, http://www.cvlibs.net/datasets/kitti/evalodometry.php, (2023).
  • Koide, K., Miura, J., Menegatti, E. (2019). A portable three-dimensional LIDAR-based system for long-term and wide-area people behavior measurement. International Journal of Advanced Robotic Systems, 16(2). doi: 10.1177/1729881419841532
  • Kudriashov A., Buratowski T., Giergiel M., Małka P. (2020). SLAM techniques application for mobile robot in rough terrain. Mechanisms and Machine Science 87, Springer. doi: https://doi.org/10.1007/978-3-030-48981-6
  • LeGO-LOAM, https://github.com/RobustFieldAutonomyLab/LeGO-LOAM, (2023)
  • Leonard, J. J., Durrant-Whyte, H. F. (1991). Mobile robot localization by tracking geometric beacons. IEEE Transactions on Robotics and Automation, 7(3), 376-382. doi: 10.1109/70.88147
  • Makarenko A. A., Williams S. B., Bourgault F., Durrant-Whyte H. F. (2002). An experiment in integrated exploration. IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 30 September - 4 October 2002, pp. 534-539. doi:10.1109/IRDS.2002.1041445
  • Milford, M. J., Wyeth, G. F., Prasser, D. (2004). RatSLAM: a hippocampal model for simultaneous localization and mapping. IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04., New Orleans, LA, USA, 26 April-01 May 2004, pp. 403-408. doi: 10.1109/ROBOT.2004.1307183
  • Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B. (2002). FastSLAM: A factored solution to the simultaneous localization and mapping problem. Eighteenth National Conference on Artificial Intelligence, Edmonton Alberta, Canada, 28 July-1 August 2002, pp.593-598
  • Moreno, L., Garrido, S., Blanco, D., Muñoz, M..L. (2009). Differential evolution solution to the SLAM problem. Robotics and Autonomous Systems, 57(4), 441-450. doi: 10.1016/j.robot.2008.05.005
  • Mur-Artal, R., Montiel, J..M..M., Tardós, J..D. (2015). ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Transactions on Robotics, 31(5), 1147-1163. doi: 10.1109/TRO.2015.2463671
  • Mur-Artal, R., Tardós, J..D. (2017). ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Transactions on Robotics, 33(5), 1255-1262. doi: 10.1109/TRO.2017.2705103
  • Niloy, M. A. K, Shama, A., Chakrabortty, R. K., Ryan, M. J., Badal, F. R., Tasneem, Z., Ahamed, M. H., Moyeen, S. I., Das, S. K., Ali, M. F., Islam, M. R., Saha, D. K. (2021). Critical design and control issues of indoor autonomous mobile robots: A review. IEEE Access, 9, 35338-35370. doi: 10.1109/ACCESS.2021.3062557
  • Prokhorov, D., Zhukov, D., Barinova, O., Anton, K., Vorontsova, A. (2019). Measuring robustness of Visual SLAM. 2019 16th International Conference on Machine Vision Applications (MVA), Tokyo, Japan, 27-31 May 2019, pp. 1-6. doi: 10.23919/MVA.2019.8758020
  • Shan, T., Englot, B. (2018). LeGO-LOAM: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 01-05 October 2018, pp. 4758-4765. doi: 10.1109/IROS.2018.8594299
  • Smith, R. C., Cheeseman, P. (1986). On the representation and estimation of spatial uncertainty. International Journal of Robotics Research, 5(4), 56-68. doi: 10.1177/027836498600500404
  • Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D. (2012). A benchmark for the evaluation of RGB-D SLAM systems. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 07-12 October 2012, pp. 573-580. doi: 10.1109/IROS.2012.6385773
  • Taheri H., Xia Z. C. (2021). SLAM; definition and evolution. Engineering Applications of Artificial Intelligence, 97, 104032. doi: 10.1016/j.engappai.2020.104032
  • Takleh, T. T. O., Bakar, N. A., Rahman, S. A., Hamzah, R., Aziz, Z. A. (2018). A brief survey on SLAM methods in autonomous vehicle. International Journal of Engineering&Technology, 7(4.27), 38-43. doi:10.14419/ijet.v7i4.27.22477
  • Zhang J., Singh, S. (2014). LOAM: Lidar odometry and mapping in real-time. 2014 Robotics: Science and Systems Conference, University of California, Berkeley, USA, 12-16 July 2014, pp. 1-9. doi: 10.15607/rss.2014.x.007
  • Zhang, J., Singh, S. (2015). Visual-lidar odometry and mapping: low-drift, robust, and fast. 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26-30 May 2015, pp. 2174-2181. doi:10.1109/ICRA.2015.7139486
  • Zhang, L., Zhang, Y. (2022). Improved feature point extraction method of ORB-SLAM2 dense map. Assembly Automation, 42(4),552-566. doi: 10.1108/AA-03-2022-0032

LiDAR Based SLAM: A Comparative Evaluation with LeGO-LOAM and HDL-Graph SLAM

Year 2025, Volume: 17 Issue: 1, 55 - 64

Abstract

Simultaneous localization and mapping (SLAM) is an area of research that is experiencing rapid advancements, with a significant impact on improving the navigation and perception capabilities of vehicles, thereby enabling their safe operation in complex environments. This study presents a comprehensive overview of the recent developments in SLAM and conducts a comparative evaluation of two widely employed SLAM methods. The evaluation is based on rigorous performance analysis using the KITTI dataset, which is one of the most popular benchmark datasets for evaluating SLAM algorithms. The evaluation focuses on two essential metrics: absolute trajectory error (ATE) and relative pose error (RPE), which provides valuable insights into the accuracy and consistency of pose estimation over time. By quantifying the deviation between estimated trajectories and ground truth data, ATE sheds light on the global accuracy of the SLAM system, while RPE examines the local error and the system's ability to maintain reliable pose estimates within sequential frames. A thorough discussion is provided on the advantages, distinctive features, and performance characteristics of each technique, thereby offering valuable insights to propel future research in this area.

References

  • Cadena C., Carlone L., Carrillo H., Latif Y., Scaramuzza D., Neira J., Reid I., Leonard J. J. (2016). Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on Robotics, 32(6), 1309-1332. doi: 10.1109/TRO.2016.2624754
  • Campos, C., Elvira, R., Rodríguez, J..J..G., Montiel, J..J..M., Tardós, J..D. (2021). ORB-SLAM3: An accurate open-source library for visual, visual–inertial, and multimap SLAM. IEEE Transactions on Robotics, 37(6), 1874-1890. doi: 10.1109/tro.2021.3075644
  • Cheng, J., Zhang, L., Chen, Q., Hu, X., Cai, J. (2022). A review of visual SLAM methods for autonomous driving vehicles. Engineering Applications of Artificial Intelligence, 114, 104992. doi: 10.1016/j.engappai.2022.104992
  • Dellaert, F., Kaess, M. (2006). Square Root SAM: Simultaneous localization and mapping via square root information smoothing. TheInternational Journal of Robotics Research, 25(12), 1181-1203. doi: 10.1177/0278364906072768
  • Dissanayake, M. W. M. G., Newman, P., Clark, S., Durrant-Whyte, H. F., Csorba, M. (2001). A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, 17(3), 229-241. doi:10.1109/70.938381
  • Gao, B., Lang, H., Ren, J. (2020). Stereo visual SLAM for autonomous vehicles: A review. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11-14 October 2020, pp. 1316-1322. doi:10.1109/SMC42975.2020.9283161
  • Geiger, A., Lenz, P., Urtasun, R. (2012). Are we ready for autonomous driving? The KITTI vision benchmark suite. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16-21 June 2012, pp. 3354-3361. doi:10.1109/CVPR.2012.6248074
  • Guclu, O., Can, A. B. (2019) Fast and effective loop closure detection to improve SLAM performance. Journal of Intelligent & Robotic Systems, 93, 495-517. doi: 10.1007/s10846-017-0718-z
  • HDL-Graph SLAM, https://github.com/koide3/hdl_graph_slam, (2023)
  • Hoshi, M., Hara, Y., Nakamura, S. (2022). Graph-based SLAM using architectural floor plans without loop closure. Advanced Robotics, 36(15), 715-723. doi: 10.1080/01691864.2022.2081513
  • Huang, L. (2021). Review on LiDAR-based SLAM techniques. 2021 International Conference on Signal Processing and Machine Learning (CONF-SPML), Stanford, CA, USA, 14-14 November 2021, pp. 163-168. doi: 10.1109/CONF-SPML54095.2021.00040
  • Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., Dellaert, F. (2011). ISAM2: Incremental smoothing and mapping using the Bayes tree. Teh International Journal of Robotics Research, 31(2), 216-235. doi: 10.1177/0278364911430419
  • Kim, A., Eustice, R. M. (2013). Perception-driven navigation: Active visual SLAM for robotic area coverage. 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 06-10 May 2013, pp. 3196-3203. doi: 10.1109/ICRA.2013.6631022
  • Kim, B., Kaess, M., Fletcher, L., Leonard, J., Bachrach, A., Roy, N., Teller, S. (2010). Multiple relative pose graphs for robust cooperative mapping. 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 03-07 May 2010, pp.3185-3192. doi: 10.1109/ROBOT.2010.5509154
  • Kim, C., Sakthivel, R., Chung, W..K. (2007). Unscented FastSLAM: A robust algorithm for the simultaneous localization and mapping problem. Proceedings 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10-14 April 2007, pp. 2439-2445. doi: 10.1109/ROBOT.2007.363685
  • Kim, P., Chen, J., Cho, Y. K. (2018). SLAM-driven robotic mapping and registration of 3D point clouds. Automation in Construction, 89, 38-48. doi: 10.1016/j.autcon.2018.01.009
  • KITTI Dataset, http://www.cvlibs.net/datasets/kitti/evalodometry.php, (2023).
  • Koide, K., Miura, J., Menegatti, E. (2019). A portable three-dimensional LIDAR-based system for long-term and wide-area people behavior measurement. International Journal of Advanced Robotic Systems, 16(2). doi: 10.1177/1729881419841532
  • Kudriashov A., Buratowski T., Giergiel M., Małka P. (2020). SLAM techniques application for mobile robot in rough terrain. Mechanisms and Machine Science 87, Springer. doi: https://doi.org/10.1007/978-3-030-48981-6
  • LeGO-LOAM, https://github.com/RobustFieldAutonomyLab/LeGO-LOAM, (2023)
  • Leonard, J. J., Durrant-Whyte, H. F. (1991). Mobile robot localization by tracking geometric beacons. IEEE Transactions on Robotics and Automation, 7(3), 376-382. doi: 10.1109/70.88147
  • Makarenko A. A., Williams S. B., Bourgault F., Durrant-Whyte H. F. (2002). An experiment in integrated exploration. IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 30 September - 4 October 2002, pp. 534-539. doi:10.1109/IRDS.2002.1041445
  • Milford, M. J., Wyeth, G. F., Prasser, D. (2004). RatSLAM: a hippocampal model for simultaneous localization and mapping. IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04., New Orleans, LA, USA, 26 April-01 May 2004, pp. 403-408. doi: 10.1109/ROBOT.2004.1307183
  • Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B. (2002). FastSLAM: A factored solution to the simultaneous localization and mapping problem. Eighteenth National Conference on Artificial Intelligence, Edmonton Alberta, Canada, 28 July-1 August 2002, pp.593-598
  • Moreno, L., Garrido, S., Blanco, D., Muñoz, M..L. (2009). Differential evolution solution to the SLAM problem. Robotics and Autonomous Systems, 57(4), 441-450. doi: 10.1016/j.robot.2008.05.005
  • Mur-Artal, R., Montiel, J..M..M., Tardós, J..D. (2015). ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Transactions on Robotics, 31(5), 1147-1163. doi: 10.1109/TRO.2015.2463671
  • Mur-Artal, R., Tardós, J..D. (2017). ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Transactions on Robotics, 33(5), 1255-1262. doi: 10.1109/TRO.2017.2705103
  • Niloy, M. A. K, Shama, A., Chakrabortty, R. K., Ryan, M. J., Badal, F. R., Tasneem, Z., Ahamed, M. H., Moyeen, S. I., Das, S. K., Ali, M. F., Islam, M. R., Saha, D. K. (2021). Critical design and control issues of indoor autonomous mobile robots: A review. IEEE Access, 9, 35338-35370. doi: 10.1109/ACCESS.2021.3062557
  • Prokhorov, D., Zhukov, D., Barinova, O., Anton, K., Vorontsova, A. (2019). Measuring robustness of Visual SLAM. 2019 16th International Conference on Machine Vision Applications (MVA), Tokyo, Japan, 27-31 May 2019, pp. 1-6. doi: 10.23919/MVA.2019.8758020
  • Shan, T., Englot, B. (2018). LeGO-LOAM: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 01-05 October 2018, pp. 4758-4765. doi: 10.1109/IROS.2018.8594299
  • Smith, R. C., Cheeseman, P. (1986). On the representation and estimation of spatial uncertainty. International Journal of Robotics Research, 5(4), 56-68. doi: 10.1177/027836498600500404
  • Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D. (2012). A benchmark for the evaluation of RGB-D SLAM systems. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 07-12 October 2012, pp. 573-580. doi: 10.1109/IROS.2012.6385773
  • Taheri H., Xia Z. C. (2021). SLAM; definition and evolution. Engineering Applications of Artificial Intelligence, 97, 104032. doi: 10.1016/j.engappai.2020.104032
  • Takleh, T. T. O., Bakar, N. A., Rahman, S. A., Hamzah, R., Aziz, Z. A. (2018). A brief survey on SLAM methods in autonomous vehicle. International Journal of Engineering&Technology, 7(4.27), 38-43. doi:10.14419/ijet.v7i4.27.22477
  • Zhang J., Singh, S. (2014). LOAM: Lidar odometry and mapping in real-time. 2014 Robotics: Science and Systems Conference, University of California, Berkeley, USA, 12-16 July 2014, pp. 1-9. doi: 10.15607/rss.2014.x.007
  • Zhang, J., Singh, S. (2015). Visual-lidar odometry and mapping: low-drift, robust, and fast. 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26-30 May 2015, pp. 2174-2181. doi:10.1109/ICRA.2015.7139486
  • Zhang, L., Zhang, Y. (2022). Improved feature point extraction method of ORB-SLAM2 dense map. Assembly Automation, 42(4),552-566. doi: 10.1108/AA-03-2022-0032
There are 37 citations in total.

Details

Primary Language English
Subjects Information Systems (Other), Electronics, Sensors and Digital Hardware (Other)
Journal Section Articles
Authors

Yiğit Çağatay Kuyu 0000-0002-7054-3102

Fahri Vatansever 0000-0002-3885-8622

Early Pub Date March 3, 2025
Publication Date
Submission Date February 28, 2024
Acceptance Date July 5, 2024
Published in Issue Year 2025 Volume: 17 Issue: 1

Cite

APA Kuyu, Y. Ç., & Vatansever, F. (2025). LiDAR Based SLAM: A Comparative Evaluation with LeGO-LOAM and HDL-Graph SLAM. International Journal of Engineering Research and Development, 17(1), 55-64. https://doi.org/10.29137/umagd.1444519

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.