A Review on the Plant-Based Bioactive Compounds Used In Treatment of Diabetes
Yıl 2024,
Cilt: 1 Sayı: 1, 1 - 9, 02.08.2024
Handan Erturk
,
Ayça Döngel
Öz
The purpose of this review is to provide a comprehensive overview of the current research on plant-based bioactive compounds used in the treatment of diabetes. By collecting and synthesizing articles on this topic, the review aims to identify the most promising compounds and their potential mechanisms of action in managing diabetes. Additionally, the review seeks to highlight gaps in the existing literature and areas for future research, guiding researchers towards new avenues of exploration. Ultimately, the goal of this review is to contribute to the growing body of knowledge on plant-based treatments for diabetes and to inform the development of new, more effective therapies for this chronic disease.
Destekleyen Kurum
Konya Food and Agriculture University
Kaynakça
- Adejuwon, S. O. (2005, January 1). Acute Effect of Vernonia Amygdalina on Blood Glucose Levels in Normoglycaemic and Alloxan-Induced Diabetic Male Sprague-Dawley Rats. West Africa Journal of Anatomy, s. 161-168. https://www.researchgate.net/publication/260984389_Acute_Effect_of_Vernonia_Amygdalina_on_Blood_Glucose_Levels_in_Normoglycaemic_and_Alloxan-Induced_Diabetic_Male_Sprague-Dawley_Rats
- Bhattacharya, S. O. (2013, November 9). Caffeic acid, naringenin and quercetin enhance glucose-stimulated insulin secretion and glucose sensitivity in INS-1E cells. Diabetes, Obesity and Metabolism, s. 602-612. https://doi.org/10.1111/dom.12236
- Boussageon, R. R. (2018, March 31). Type 2 diabetes. The Lancet. https://doi.org/10.1016/S0140-6736(18)30702-5
- Butler, A. J.-W. (2003, January 1). Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. American Diabetes Association, s. 102-110. https://doi.org/10.2337/diabetes.52.1.102
- Cai, J. W. (2023, August). Naringenin: A flavanone with anti-inflammatory and anti-infective properties. Biomedicine & Pharmacotherapy. https://doi.org/10.1016/j.biopha.2023.114990
- Chakraborty, S. D. (2020, June 5). Aptamer-Functionalized Drug Nanocarrier Improves Hepatocellular Carcinoma toward Normal by Targeting Neoplastic Hepatocytes. Molecular Therapy, s. 34-49. https://doi.org/10.1016/j.omtn.2020.01.034
- DEMET ÇELEBİ, K. T. (2021, TEMMUZ 26). TÜRKİYE Patent No. 2021/011385.
- DEMET ÇELEBİ, K. T. (2021, EYLÜL 21). TÜRKİYE Patent No. 2021/011386 .
- DEMİRCİ, M. (2022, AĞUSTOS 22). TÜRKİYE Patent No. 2022/012027 .
- Devi, S. K. (2023, October). In vitro and in vivo evaluation of antidiabetic potential and drug-herb interactions of Euphorbia neriifolia in streptozotocin-induced diabetes in rats and it’s in vitro antioxidant studies. Food Chemistry Advances. https://doi.org/10.1016/j.focha.2023.100199
- Dewanjee, S. C. (2020, March 23). Plant-Based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms21062217
- Fan, E. Z. (2005, September 5). Determination of trans-Resveratrol in ChinaGreat Wall ‘‘Fazenda’’ Red Wine by Useof Micellar Electrokinetic Chromatography. Chromatographia, s. 289-294. https://doi.org/10.1365/s10337-005-0619-3
- Florence, A. (2005, Spring). Nanoparticle uptake by the oral route: Fulfilling its potential? Drug Discovery Today: Technologies, s. 75-81. https://doi.org/10.1016/j.ddtec.2005.05.019
- Fu, Z. G. (2013, January 1). Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. U.S. Department of HSS, s. 25-53. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3934755/ adresinden alındı
- Gothai, S. G. (2016, Agust 4). Natural Phyto-Bioactive Compounds for the Treatment of Type 2 Diabetes: Inflammation as a Target. Nutrients. https://doi.org/10.3390/nu8080461
- Hashemipour, M. M. (2023, January 25). Trends in incidence rates of childhood type 1 diabetes mellitus: A retrospective study in Isfahan province, Iran. Journal of Diabetes Investigation, s. 376-386. https://doi.org/10.1111/jdi.13975
- Hu, F. (2011, May 20). Globalization of Diabetes: The role of diet, lifestyle, and genes. Diabetes Care, s. 1249–1257. https://doi.org/10.2337/dc11-0442
- İbrahim Gülseren, B. Ç. (2023, HAZİRAN 21). TÜRKİYE Patent No. 2023/005594 .
- Jain, P. J. (2021, April 23). Everything You Wanted to Know About Noninvasive Glucose Measurement and Control. IEEE Consumer Electronics Magazine, s. 61-66. https://doi.org/10.1109/MCE.2021.3073498
- Jarosova, V. V. (2020, February 25). Metabolism of cis- and trans-Resveratrol and Dihydroresveratrol in an Intestinal Epithelial Model. https://www.mdpi.com/2072-6643/12/3/595, s. 595. https://doi.org/10.3390/nu12030595
- Karkute, S. K. (2018). Anti-diabetic Phenolic Compounds of Black Carrot (Daucus carota Subspecies sativus var. atrorubens Alef.) Inhibit Enzymes of Glucose Metabolism: An in silico and in vitro Validation. Medicinal Chemistry, s. 641-649. https://doi.org/10.2174/1573406414666180301092819
- Khanra, R. B. (2017, October). Taraxerol, a pentacyclic triterpenoid, from Abroma augusta leaf attenuates diabetic nephropathy in type 2 diabetic rats. Biomedicine & Pharmacotherapy, s. 726-741. https://doi.org/10.1016/j.biopha.2017.07.112
- Kumar, A. S. (2022, January 1). Ginger nanoparticles mediated induction of Foxa2 prevents high-fat diet-induced insulin resistance. Theranostics, s. 1388–1403. https://doi.org/10.7150/thno.62514
- McNeil, S. (2011). Unique benefits of nanotechnology to drug delivery and diagnostics. S. E. McNeil içinde, Characterization of Nanoparticles Intended for Drug Delivery (s. 3-8). Humana Press.
- Meng, T. X. (2021, January 5). Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules, s. 229. https://doi.org/10.3390/molecules26010229
- Mollania, F. S. (2021, November 21). Investigating the ability of Securigera securidaca extract in biological synthesis of selenium nanoparticles, pancreatic α-amylase inhibition, antioxidant and phenolic capacity and in vivo studying the anti-diabetic effects of extract on pseudo-diabetic r. Nanotechnology for Environmental Engineering, s. 945-954. https://doi.org/10.1007/s41204-021-00177-2
- Nadire Eser, A. Y. (2020, NİSAN 21). TÜRKİYE Patent No. 2020/04775 .
- Narvaez, J. C. (2022, June 3). Combination therapy of bioactive compounds with acarbose: A proposal to control hyperglycemia in type 2 diabetes. Journal of Food Biochemistry. https://doi.org/10.1111/jfbc.14268
- Noor, A. G. (2017, December 9). Improvement of insulin secretion and pancreatic β-cell function in streptozotocin-induced diabetic rats treated with Aloe vera extract. Pharmacognosy Research, s. 99-104. https://doi.org/10.4103/pr.pr_75_17
- Ojewole, J. (2006, January 3). Antinociceptive, anti-inflammatory and antidiabetic properties of Hypoxis hemerocallidea Fisch. & C.A. Mey. (Hypoxidaceae) corm [‘African Potato’] aqueous extract in mice and rats. Journal of Ethnopharmacology, s. 126-134. https://doi.org/10.1016/j.jep.2005.07.012
- PubChem Compound. (2024, July 1). National Center for Biotechnology Information. PubChem: https://pubchem.ncbi.nlm.nih.gov/compound/9811704. adresinden alındı
- Qaseem, A. H. (2017, January 3). Oral pharmacologic treatment of type 2 diabetes mellitus: a clinical practice guideline from the American College of Physicians. Annals of Internal Medicine, s. 279-290. https://doi.org/10.7326/M16-1860
- Rahman, M. D. (2022, August). Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review. Biomedicine & Pharmacotherapy. https://doi.org/10.1016/j.biopha.2022.113217
- Rathore, S. M. (2020, January 8). Curcumin: A Review for Health Benefits. International Journal of Science and Research, s. 273-290. https://www.ijrrjournal.com/IJRR_Vol.7_Issue.1_Jan2020/IJRR0039.pdf adresinden alındı
- Saikat Dewanjee, P. C. (2020). Plant-Based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy. Derleme. https://doi.org/10.3390/ijms21062217
- Shamsi-Goushki, A. M. (2020, January 26). Comparative Effects of Curcumin versus Nano-Curcumin on Insulin Resistance, Serum Levels of Apelin and Lipid Profile in Type 2 Diabetic Rats. Dovepress, s. 2337—2346. https://doi.org/10.2147/DMSO.S247351
- Shanmugasundaram, E. R. (1990, October 30). Use of Gymnema sylvestre leaf extract in the control of blood glucose in insulin-dependent diabetes mellitus. Journal of Ethnopharmacology, s. 281-294. https://doi.org/10.1016/0378-8741(90)90107-5
- Sharma, A. S. (1993, February 14). Glucose-Induced Transcription of the Insulin Gene Is Mediated by Factors Required for β-Cell-Type-Specific Expression. Molecular and Cellular Biology, s. 871-879. https://doi.org/10.1128/mcb.14.2.871
- Stabrauskiene, J. K. (2022, July 13). Naringin and Naringenin: Their Mechanisms of Action and the Potential Anticancer Activities. Biomedicines. https://doi.org/10.3390/biomedicines10071686.
- Szkudelski, T. S. (2011, January 24). Anti-diabetic effects of resveratrol. ANNALS, s. 34-39. https://doi.org/10.1111/j.1749-6632.2010.05844.x
- Tadera, K. M. (2006, April). Inhibition of α-Glucosidase and α-Amylase by Flavonoids. Journal of Nutritional Science and Vitaminology, s. 149-153. https://doi.org/10.3177/jnsv.52.149
- Taylor, R. (2012, March 14). Insulin Resistance and Type 2 Diabetes. Diabetes, s. 778-779. https://doi.org/10.2337/db12-0073
- Taylor, S. Y. (2021, January 19). Pharmacological treatment of hyperglycemia in type 2 diabetes. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI142243
- Tran, N. P. (2020, August 28). Bioactive Compounds in Anti-Diabetic Plants: From Herbal Medicine to Modern Drug Discovery. Biology, s. 252. https://doi.org/10.3390/biology9090252
- Ugwor, E. J. (2022, December). Network pharmacology-based elucidation of bioactive compounds in propolis and putative underlying mechanisms against type-2 diabetes mellitus. Pharmacological Research - Modern Chinese Medicine. https://doi.org/10.1016/j.prmcm.2022.100183
Venter, M. R. (2008, September 2). Antidiabetic screening and scoring of 11 plants traditionally used in South Africa. Journal of Ethnopharmacology, s. 81-86. https://doi.org/10.1016/j.jep.2008.05.031
- Wentworth, B. S.-K. (1986, December). Characterization of the two nonallelic genes encoding mouse preproinsulin. Journal of Molecular Evolution, s. 305-312. https://doi.org/10.1007/BF02100639
- Wilczewska, A. N. (2012, September-October). Nanoparticles as drug delivery systems. Pharmacological Reports, s. 1020-1037. https://doi.org/10.1016/S1734-1140(12)70901-5
- Wu, Y. D. (2014, September 6). Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci , s. 1185-1200. https://doi.org/10.7150/ijms.10001
- Yallapu, M. N. (2015, September 3). Therapeutic Applications of Curcumin Nanoformulations. The AAPS Journal, s. 1341–1356. https://doi.org/10.1208/s12248-015-9811-z
- Yücel, Ç. Ş. (2018, June 6). Nanoliposomal Resveratrol as a Novel Approach to Treatment of Diabetes Mellitus. Journal Of Nanoscience And Nanotechnology, s. 3856-3864. https://doi.org/10.1166/jnn.2018.15247
- Zhang, D. F. (2013, November 24). Curcumin and Diabetes: A Systematic Review. Evidence-based Complementary and Alternative Medicine. https://doi.org/10.1155/2013/636053
Diyabet tedavisinde kullanılan bitki bazlı biyoaktif bileşenler üzerine derleme
Yıl 2024,
Cilt: 1 Sayı: 1, 1 - 9, 02.08.2024
Handan Erturk
,
Ayça Döngel
Öz
The purpose of this review is to provide a comprehensive overview of the current research on plant-based bioactive compounds used in the treatment of diabetes. By collecting and synthesizing articles on this topic, the review aims to identify the most promising compounds and their potential mechanisms of action in managing diabetes. Additionally, the review seeks to highlight gaps in the existing literature and areas for future research, guiding researchers towards new avenues of exploration. Ultimately, the goal of this review is to contribute to the growing body of knowledge on plant-based treatments for diabetes and to inform the development of new, more effective therapies for this chronic disease.
Kaynakça
- Adejuwon, S. O. (2005, January 1). Acute Effect of Vernonia Amygdalina on Blood Glucose Levels in Normoglycaemic and Alloxan-Induced Diabetic Male Sprague-Dawley Rats. West Africa Journal of Anatomy, s. 161-168. https://www.researchgate.net/publication/260984389_Acute_Effect_of_Vernonia_Amygdalina_on_Blood_Glucose_Levels_in_Normoglycaemic_and_Alloxan-Induced_Diabetic_Male_Sprague-Dawley_Rats
- Bhattacharya, S. O. (2013, November 9). Caffeic acid, naringenin and quercetin enhance glucose-stimulated insulin secretion and glucose sensitivity in INS-1E cells. Diabetes, Obesity and Metabolism, s. 602-612. https://doi.org/10.1111/dom.12236
- Boussageon, R. R. (2018, March 31). Type 2 diabetes. The Lancet. https://doi.org/10.1016/S0140-6736(18)30702-5
- Butler, A. J.-W. (2003, January 1). Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. American Diabetes Association, s. 102-110. https://doi.org/10.2337/diabetes.52.1.102
- Cai, J. W. (2023, August). Naringenin: A flavanone with anti-inflammatory and anti-infective properties. Biomedicine & Pharmacotherapy. https://doi.org/10.1016/j.biopha.2023.114990
- Chakraborty, S. D. (2020, June 5). Aptamer-Functionalized Drug Nanocarrier Improves Hepatocellular Carcinoma toward Normal by Targeting Neoplastic Hepatocytes. Molecular Therapy, s. 34-49. https://doi.org/10.1016/j.omtn.2020.01.034
- DEMET ÇELEBİ, K. T. (2021, TEMMUZ 26). TÜRKİYE Patent No. 2021/011385.
- DEMET ÇELEBİ, K. T. (2021, EYLÜL 21). TÜRKİYE Patent No. 2021/011386 .
- DEMİRCİ, M. (2022, AĞUSTOS 22). TÜRKİYE Patent No. 2022/012027 .
- Devi, S. K. (2023, October). In vitro and in vivo evaluation of antidiabetic potential and drug-herb interactions of Euphorbia neriifolia in streptozotocin-induced diabetes in rats and it’s in vitro antioxidant studies. Food Chemistry Advances. https://doi.org/10.1016/j.focha.2023.100199
- Dewanjee, S. C. (2020, March 23). Plant-Based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms21062217
- Fan, E. Z. (2005, September 5). Determination of trans-Resveratrol in ChinaGreat Wall ‘‘Fazenda’’ Red Wine by Useof Micellar Electrokinetic Chromatography. Chromatographia, s. 289-294. https://doi.org/10.1365/s10337-005-0619-3
- Florence, A. (2005, Spring). Nanoparticle uptake by the oral route: Fulfilling its potential? Drug Discovery Today: Technologies, s. 75-81. https://doi.org/10.1016/j.ddtec.2005.05.019
- Fu, Z. G. (2013, January 1). Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. U.S. Department of HSS, s. 25-53. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3934755/ adresinden alındı
- Gothai, S. G. (2016, Agust 4). Natural Phyto-Bioactive Compounds for the Treatment of Type 2 Diabetes: Inflammation as a Target. Nutrients. https://doi.org/10.3390/nu8080461
- Hashemipour, M. M. (2023, January 25). Trends in incidence rates of childhood type 1 diabetes mellitus: A retrospective study in Isfahan province, Iran. Journal of Diabetes Investigation, s. 376-386. https://doi.org/10.1111/jdi.13975
- Hu, F. (2011, May 20). Globalization of Diabetes: The role of diet, lifestyle, and genes. Diabetes Care, s. 1249–1257. https://doi.org/10.2337/dc11-0442
- İbrahim Gülseren, B. Ç. (2023, HAZİRAN 21). TÜRKİYE Patent No. 2023/005594 .
- Jain, P. J. (2021, April 23). Everything You Wanted to Know About Noninvasive Glucose Measurement and Control. IEEE Consumer Electronics Magazine, s. 61-66. https://doi.org/10.1109/MCE.2021.3073498
- Jarosova, V. V. (2020, February 25). Metabolism of cis- and trans-Resveratrol and Dihydroresveratrol in an Intestinal Epithelial Model. https://www.mdpi.com/2072-6643/12/3/595, s. 595. https://doi.org/10.3390/nu12030595
- Karkute, S. K. (2018). Anti-diabetic Phenolic Compounds of Black Carrot (Daucus carota Subspecies sativus var. atrorubens Alef.) Inhibit Enzymes of Glucose Metabolism: An in silico and in vitro Validation. Medicinal Chemistry, s. 641-649. https://doi.org/10.2174/1573406414666180301092819
- Khanra, R. B. (2017, October). Taraxerol, a pentacyclic triterpenoid, from Abroma augusta leaf attenuates diabetic nephropathy in type 2 diabetic rats. Biomedicine & Pharmacotherapy, s. 726-741. https://doi.org/10.1016/j.biopha.2017.07.112
- Kumar, A. S. (2022, January 1). Ginger nanoparticles mediated induction of Foxa2 prevents high-fat diet-induced insulin resistance. Theranostics, s. 1388–1403. https://doi.org/10.7150/thno.62514
- McNeil, S. (2011). Unique benefits of nanotechnology to drug delivery and diagnostics. S. E. McNeil içinde, Characterization of Nanoparticles Intended for Drug Delivery (s. 3-8). Humana Press.
- Meng, T. X. (2021, January 5). Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules, s. 229. https://doi.org/10.3390/molecules26010229
- Mollania, F. S. (2021, November 21). Investigating the ability of Securigera securidaca extract in biological synthesis of selenium nanoparticles, pancreatic α-amylase inhibition, antioxidant and phenolic capacity and in vivo studying the anti-diabetic effects of extract on pseudo-diabetic r. Nanotechnology for Environmental Engineering, s. 945-954. https://doi.org/10.1007/s41204-021-00177-2
- Nadire Eser, A. Y. (2020, NİSAN 21). TÜRKİYE Patent No. 2020/04775 .
- Narvaez, J. C. (2022, June 3). Combination therapy of bioactive compounds with acarbose: A proposal to control hyperglycemia in type 2 diabetes. Journal of Food Biochemistry. https://doi.org/10.1111/jfbc.14268
- Noor, A. G. (2017, December 9). Improvement of insulin secretion and pancreatic β-cell function in streptozotocin-induced diabetic rats treated with Aloe vera extract. Pharmacognosy Research, s. 99-104. https://doi.org/10.4103/pr.pr_75_17
- Ojewole, J. (2006, January 3). Antinociceptive, anti-inflammatory and antidiabetic properties of Hypoxis hemerocallidea Fisch. & C.A. Mey. (Hypoxidaceae) corm [‘African Potato’] aqueous extract in mice and rats. Journal of Ethnopharmacology, s. 126-134. https://doi.org/10.1016/j.jep.2005.07.012
- PubChem Compound. (2024, July 1). National Center for Biotechnology Information. PubChem: https://pubchem.ncbi.nlm.nih.gov/compound/9811704. adresinden alındı
- Qaseem, A. H. (2017, January 3). Oral pharmacologic treatment of type 2 diabetes mellitus: a clinical practice guideline from the American College of Physicians. Annals of Internal Medicine, s. 279-290. https://doi.org/10.7326/M16-1860
- Rahman, M. D. (2022, August). Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review. Biomedicine & Pharmacotherapy. https://doi.org/10.1016/j.biopha.2022.113217
- Rathore, S. M. (2020, January 8). Curcumin: A Review for Health Benefits. International Journal of Science and Research, s. 273-290. https://www.ijrrjournal.com/IJRR_Vol.7_Issue.1_Jan2020/IJRR0039.pdf adresinden alındı
- Saikat Dewanjee, P. C. (2020). Plant-Based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy. Derleme. https://doi.org/10.3390/ijms21062217
- Shamsi-Goushki, A. M. (2020, January 26). Comparative Effects of Curcumin versus Nano-Curcumin on Insulin Resistance, Serum Levels of Apelin and Lipid Profile in Type 2 Diabetic Rats. Dovepress, s. 2337—2346. https://doi.org/10.2147/DMSO.S247351
- Shanmugasundaram, E. R. (1990, October 30). Use of Gymnema sylvestre leaf extract in the control of blood glucose in insulin-dependent diabetes mellitus. Journal of Ethnopharmacology, s. 281-294. https://doi.org/10.1016/0378-8741(90)90107-5
- Sharma, A. S. (1993, February 14). Glucose-Induced Transcription of the Insulin Gene Is Mediated by Factors Required for β-Cell-Type-Specific Expression. Molecular and Cellular Biology, s. 871-879. https://doi.org/10.1128/mcb.14.2.871
- Stabrauskiene, J. K. (2022, July 13). Naringin and Naringenin: Their Mechanisms of Action and the Potential Anticancer Activities. Biomedicines. https://doi.org/10.3390/biomedicines10071686.
- Szkudelski, T. S. (2011, January 24). Anti-diabetic effects of resveratrol. ANNALS, s. 34-39. https://doi.org/10.1111/j.1749-6632.2010.05844.x
- Tadera, K. M. (2006, April). Inhibition of α-Glucosidase and α-Amylase by Flavonoids. Journal of Nutritional Science and Vitaminology, s. 149-153. https://doi.org/10.3177/jnsv.52.149
- Taylor, R. (2012, March 14). Insulin Resistance and Type 2 Diabetes. Diabetes, s. 778-779. https://doi.org/10.2337/db12-0073
- Taylor, S. Y. (2021, January 19). Pharmacological treatment of hyperglycemia in type 2 diabetes. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI142243
- Tran, N. P. (2020, August 28). Bioactive Compounds in Anti-Diabetic Plants: From Herbal Medicine to Modern Drug Discovery. Biology, s. 252. https://doi.org/10.3390/biology9090252
- Ugwor, E. J. (2022, December). Network pharmacology-based elucidation of bioactive compounds in propolis and putative underlying mechanisms against type-2 diabetes mellitus. Pharmacological Research - Modern Chinese Medicine. https://doi.org/10.1016/j.prmcm.2022.100183
Venter, M. R. (2008, September 2). Antidiabetic screening and scoring of 11 plants traditionally used in South Africa. Journal of Ethnopharmacology, s. 81-86. https://doi.org/10.1016/j.jep.2008.05.031
- Wentworth, B. S.-K. (1986, December). Characterization of the two nonallelic genes encoding mouse preproinsulin. Journal of Molecular Evolution, s. 305-312. https://doi.org/10.1007/BF02100639
- Wilczewska, A. N. (2012, September-October). Nanoparticles as drug delivery systems. Pharmacological Reports, s. 1020-1037. https://doi.org/10.1016/S1734-1140(12)70901-5
- Wu, Y. D. (2014, September 6). Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci , s. 1185-1200. https://doi.org/10.7150/ijms.10001
- Yallapu, M. N. (2015, September 3). Therapeutic Applications of Curcumin Nanoformulations. The AAPS Journal, s. 1341–1356. https://doi.org/10.1208/s12248-015-9811-z
- Yücel, Ç. Ş. (2018, June 6). Nanoliposomal Resveratrol as a Novel Approach to Treatment of Diabetes Mellitus. Journal Of Nanoscience And Nanotechnology, s. 3856-3864. https://doi.org/10.1166/jnn.2018.15247
- Zhang, D. F. (2013, November 24). Curcumin and Diabetes: A Systematic Review. Evidence-based Complementary and Alternative Medicine. https://doi.org/10.1155/2013/636053