Derleme
BibTex RIS Kaynak Göster

BİLGİSAYARLI TOMOGRAFİ İLE ÜÇ BOYUTLU (3B) TARAMA

Yıl 2022, Cilt: 4 Sayı: 2, 1 - 21, 31.12.2022

Öz

Bilgisayarlı tomografi, x-ışınlarından faydalanılarak bir yapının iç ve dış geometrik verisinin detaylı bir şekilde elde edilebildiği bir tarama teknolojisidir. Bu teknoloji, tıp alanında hastalıkların teşhisinde görüntüleme aracı olarak kullanıldığı gibi elde edilen kesit görüntüler çeşitli yazılımlar yardımıyla 3B modellere dönüştürülebilmektedir. Bilgisayarlı tomografinin sağladığı ayrıcalıklar ve yöntemin tıp alanının dışındaki endüstriyel alanlarda tersine mühendislik, tahribatsız muayene gibi uygulamalar için de elverişli olması bu tarama teknolojisine ilgiyi daha da artırmıştır. Bu çalışmada bilgisayarlı tomografinin prensipleri, kullanılan yöntemler, ilgili terimler, parametreler ve birimler, bilgisayarlı tomografi makinelerinin jenerasyonları ve gelişimi, endüstriyel bilgisayarlı tomografi ve son yıllarda yapılan akademik çalışmalara yer verilmiştir.

Kaynakça

  • [1] Withers, P. J., Bouman, C., Carmignato, S., Cnudde, V., Grimaldi, D., Hagen, C. K., Stock, S. R. (2021). X-ray computed tomography. Nature Reviews Methods Primers, 1(1), 1-21. [2] Yu, Q., Liu, H., Yang, T., Liu, H. (2018). 3D numerical study on fracture process of concrete with different ITZ properties using X-ray computerized tomography. International Journal of Solids and Structures, 147, 204-222.
  • [3] Marston, V. (2020). Computed Axial Tomography Basics. Fast Facts for the Radiology Nurse: An Orientation and Nursing Care Guide, 67.
  • [4] Ambrose J, Hounsfield G (1973) Computerized transverse axial tomography. Br J Radiol 46:148–149
  • [5] Hounsfield GN (1973) Computerized transverse axial scanning (tomography). Part 1. Description of system. Br J Radiol 46:1016–1022
  • [6] Owczarek, D., Ostrowska, K., Sładek, J. A. (2017). Examination of optical coordinate measurement systems in the conditions of their operation. Journal of Machine Construction and Maintenance-Problemy Eksploatacji.
  • [7] Bannink, T., Bouman, S., Wolterink, R., van Veen, R., van Alphen, M. (2021). Implementation of 3D technologies in the workflow of auricular prosthetics: A method using optical scanning and stereolithography 3D printing. The Journal of Prosthetic Dentistry, 125(4), 708-713.
  • [8] Yang, S., Shi, X., Zhang, G., Lv, C. (2018). A dual-platform laser scanner for 3D reconstruction of dental pieces. Engineering, 4(6), 796-805.
  • [9] Puerta, A. P. V., Jimenez-Rodriguez, R. A., Fernandez-Vidal, S., Fernandez-Vidal, S. R. (2020). Photogrammetry as an Engineering Design Tool. In Product Design. IntechOpen.
  • [10] Jerban, S., Chang, E. Y., Du, J. (2020). Magnetic resonance imaging (MRI) studies of knee joint under mechanical loading. Magnetic resonance imaging, 65, 27-36.
  • [11] Elad, B., Lessick, J., Adler, Z., Caspi, O. (2022). Three-Dimensional Computed Tomography Reconstruction for Diagnosis of Left Ventricular Assist Device Outflow Graft Twist. Circulation: Cardiovascular Imaging, 15(4), e013714.
  • [12] Stier, C., Parmar, C., Koschker, A. C., Bokhari, M., Stier, R., Chiappetta, S. (2020). Computed tomography-3D-volumetry: a valuable adjunctive diagnostic tool after bariatric surgery. Mini-invasive Surgery, 4.
  • [13] Feng, Y., Shu, J., Liu, Y., Zheng, T., Shao, B., Liu, Z. (2021). Biomechanical analysis of temporomandibular joints during mandibular protrusion and retraction motions: A 3d finite element simulation. Computer methods and programs in biomedicine, 208, 106299.
  • [14] Akıncı, S. Z., Karabulut, D., Sürmen, H. K., Yaman, O., Arslan, Y. Z. (2022). The Effect of PEEK-Rod Fixation Systems on Finite Element Lumbar Spine Model. Avrupa Bilim ve Teknoloji Dergisi, (34), 783-786.
  • [15] Islam, M. N., Khan, J., Ikematsu, K., Bagali, P. G., Raman, V. K. (2018). Digital Autopsy: Popular Tools for an Unpopular Procedure. Arab Journal of Forensic Sciences & Forensic Medicine, 1(7), 792-799.
  • [16] Buchlak, Q. D., Milne, M. R., Seah, J., Johnson, A., Samarasinghe, G., Hachey, B., Brotchie, P. (2022). Charting the potential of brain computed tomography deep learning systems. Journal of Clinical Neuroscience, 99, 217-223.
  • [17] Kumamaru, K. K., Fujimoto, S., Otsuka, Y., Kawasaki, T., Kawaguchi, Y., Kato, E., Aoki, S. (2020). Diagnostic accuracy of 3D deep-learning-based fully automated estimation of patient-level minimum fractional flow reserve from coronary computed tomography angiography. European Heart Journal-Cardiovascular Imaging, 21(4), 437-445.
  • [18] Zhang, P., Lee, Y. I., Zhang, J. (2019). A review of high-resolution X-ray computed tomography applied to petroleum geology and a case study. Micron, 124, 102702.
  • [19] Cieślik, W., Szwajca, F., Wisłocki, K. (2022). Reverse engineering of research engine cylinder-head. Combustion Engines, 61.
  • [20] Attar, H., Löber, L., Funk, A., Calin, M., Zhang, L. C., Prashanth, K. G., Eckert, J. (2015). Mechanical behavior of porous commercially pure Ti and Ti–TiB composite materials manufactured by selective laser melting. Materials Science and Engineering: A, 625, 350-356.
  • [21] Mensa, F. S., Muzzi, M., Spani, F., Tromba, G., Dullin, C., Di Giulio, A. (2022). When the Utility of Micro-Computed Tomography Collides with Insect Sample Preparation: An Entomologist User Guide to Solve Post-Processing Issues and Achieve Optimal 3D Models. Applied Sciences, 12(2), 769.
  • [22] Zanetti, E. M., Ciaramella, S., Calì, M., Pascoletti, G., Martorelli, M., Asero, R., Watts, D. C. (2018). Modal analysis for implant stability assessment: Sensitivity of this methodology for different implant designs. Dental Materials, 34(8), 1235-1245.
  • [23] Boas, F. E., Fleischmann, D. (2012). CT artifacts: causes and reduction techniques. Imaging Med, 4(2), 229-240.
  • [24] Yu Z, Thibault JB, Bouman CA, Sauer KD, Hsieh J: Fast model-based X-ray CT reconstruction using spatially nonhomogeneous ICD optimization. IEEE Trans Image Process 20(1), 161-175 (2011).
  • [25] Thibault JB, Sauer KD, Bouman CA, Hsieh J: A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys 34(11), 4526-4544 (2007)
  • [26] Boas FE, Fleischmann D: Evaluation of two iterative techniques for reducing metal artifacts in computed tomography. Radiology 259(3), 894-902 (2011).
  • [27] Eckel, S., Zscherpel, U., Huthwaite, P., Paul, N., Schumm, A. (2020). Radiographic film system classification and noise characterisation by a camera-based digitisation procedure. NDT & E International, 111, 102241.
  • [28] Başekim, C. Ç., Arslanoğlu, A. (2020). Bilgisayarlı Tomografide Radyasyon Doz Kontrolü ve Düşük Doz Çekim Teknikleri.
  • [29] Kamalian, S., Lev, M. H., Gupta, R. (2016). Computed tomography imaging and angiography–principles. Handbook of clinical neurology, 135, 3-20.
  • [30] Modjtahedi, B. S., Rong, A., Bobinski, M., McGahan, J., Morse, L. S. (2015). Imaging characteristics of intraocular foreign bodies: a comparative study of plain film X-ray, computed tomography, ultrasound, and magnetic resonance imaging. Retina, 35(1), 95-104.
  • [31] Sollmann, N., Mei, K., Hedderich, D. M., Maegerlein, C., Kopp, F. K., Löffler, M. T., Noël, P. B. (2019). Multi-detector CT imaging: impact of virtual tube current reduction and sparse sampling on detection of vertebral fractures. European radiology, 29(7), 3606-3616.
  • [32] De Chiffre, L., Carmignato, S., Kruth, J. P., Schmitt, R., Weckenmann, A. (2014). Industrial applications of computed tomography. CIRP annals, 63(2), 655-677.
  • [33] Wu, Y., Saxena, S., Xing, Y., Wang, Y., Li, C., Yung, W. K., Pecht, M. (2018). Analysis of manufacturing-induced defects and structural deformations in lithium-ion batteries using computed tomography. Energies, 11(4), 925.
  • [34] Kumar, V., Baburaj, V., Patel, S., Sharma, S., Vaishya, R. (2021). Does the use of intraoperative CT scan improve outcomes in Orthopaedic surgery? A systematic review and meta-analysis of 871 cases. Journal of clinical orthopaedics and trauma, 18, 216-223.
  • [35] Modi, Y. K., Sanadhya, S. (2018). Design and additive manufacturing of patient-specific cranial and pelvic bone implants from computed tomography data. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(10), 1-11.
  • [36] Khosravani, M. R., Reinicke, T. (2020). On the use of X-ray computed tomography in assessment of 3D-printed components. Journal of Nondestructive Evaluation, 39(4), 1-17.

THREE-DIMENSIONAL (3D) SCANNING WITH COMPUTERIZED TOMOGRAPHY

Yıl 2022, Cilt: 4 Sayı: 2, 1 - 21, 31.12.2022

Öz

Computed tomography is a scanning technology with which it is possible to obtain detailed internal and external geometric data of a structure by using x-rays. This technology is used as an imaging tool in the diagnosis of diseases in the field of medicine, and the obtained cross-section images can be converted into 3D models with the help of various software. The privileges provided by computed tomography and also its convenience for applications such as reverse engineering and non-destructive testing in industrial areas outside the medical field have increased the popularity of this scanning technology. This study includes principles of computed tomography, methods used, related terms, parameters and units, generations and development of computed tomography machines, industrial computed tomography, and recent academic studies.

Kaynakça

  • [1] Withers, P. J., Bouman, C., Carmignato, S., Cnudde, V., Grimaldi, D., Hagen, C. K., Stock, S. R. (2021). X-ray computed tomography. Nature Reviews Methods Primers, 1(1), 1-21. [2] Yu, Q., Liu, H., Yang, T., Liu, H. (2018). 3D numerical study on fracture process of concrete with different ITZ properties using X-ray computerized tomography. International Journal of Solids and Structures, 147, 204-222.
  • [3] Marston, V. (2020). Computed Axial Tomography Basics. Fast Facts for the Radiology Nurse: An Orientation and Nursing Care Guide, 67.
  • [4] Ambrose J, Hounsfield G (1973) Computerized transverse axial tomography. Br J Radiol 46:148–149
  • [5] Hounsfield GN (1973) Computerized transverse axial scanning (tomography). Part 1. Description of system. Br J Radiol 46:1016–1022
  • [6] Owczarek, D., Ostrowska, K., Sładek, J. A. (2017). Examination of optical coordinate measurement systems in the conditions of their operation. Journal of Machine Construction and Maintenance-Problemy Eksploatacji.
  • [7] Bannink, T., Bouman, S., Wolterink, R., van Veen, R., van Alphen, M. (2021). Implementation of 3D technologies in the workflow of auricular prosthetics: A method using optical scanning and stereolithography 3D printing. The Journal of Prosthetic Dentistry, 125(4), 708-713.
  • [8] Yang, S., Shi, X., Zhang, G., Lv, C. (2018). A dual-platform laser scanner for 3D reconstruction of dental pieces. Engineering, 4(6), 796-805.
  • [9] Puerta, A. P. V., Jimenez-Rodriguez, R. A., Fernandez-Vidal, S., Fernandez-Vidal, S. R. (2020). Photogrammetry as an Engineering Design Tool. In Product Design. IntechOpen.
  • [10] Jerban, S., Chang, E. Y., Du, J. (2020). Magnetic resonance imaging (MRI) studies of knee joint under mechanical loading. Magnetic resonance imaging, 65, 27-36.
  • [11] Elad, B., Lessick, J., Adler, Z., Caspi, O. (2022). Three-Dimensional Computed Tomography Reconstruction for Diagnosis of Left Ventricular Assist Device Outflow Graft Twist. Circulation: Cardiovascular Imaging, 15(4), e013714.
  • [12] Stier, C., Parmar, C., Koschker, A. C., Bokhari, M., Stier, R., Chiappetta, S. (2020). Computed tomography-3D-volumetry: a valuable adjunctive diagnostic tool after bariatric surgery. Mini-invasive Surgery, 4.
  • [13] Feng, Y., Shu, J., Liu, Y., Zheng, T., Shao, B., Liu, Z. (2021). Biomechanical analysis of temporomandibular joints during mandibular protrusion and retraction motions: A 3d finite element simulation. Computer methods and programs in biomedicine, 208, 106299.
  • [14] Akıncı, S. Z., Karabulut, D., Sürmen, H. K., Yaman, O., Arslan, Y. Z. (2022). The Effect of PEEK-Rod Fixation Systems on Finite Element Lumbar Spine Model. Avrupa Bilim ve Teknoloji Dergisi, (34), 783-786.
  • [15] Islam, M. N., Khan, J., Ikematsu, K., Bagali, P. G., Raman, V. K. (2018). Digital Autopsy: Popular Tools for an Unpopular Procedure. Arab Journal of Forensic Sciences & Forensic Medicine, 1(7), 792-799.
  • [16] Buchlak, Q. D., Milne, M. R., Seah, J., Johnson, A., Samarasinghe, G., Hachey, B., Brotchie, P. (2022). Charting the potential of brain computed tomography deep learning systems. Journal of Clinical Neuroscience, 99, 217-223.
  • [17] Kumamaru, K. K., Fujimoto, S., Otsuka, Y., Kawasaki, T., Kawaguchi, Y., Kato, E., Aoki, S. (2020). Diagnostic accuracy of 3D deep-learning-based fully automated estimation of patient-level minimum fractional flow reserve from coronary computed tomography angiography. European Heart Journal-Cardiovascular Imaging, 21(4), 437-445.
  • [18] Zhang, P., Lee, Y. I., Zhang, J. (2019). A review of high-resolution X-ray computed tomography applied to petroleum geology and a case study. Micron, 124, 102702.
  • [19] Cieślik, W., Szwajca, F., Wisłocki, K. (2022). Reverse engineering of research engine cylinder-head. Combustion Engines, 61.
  • [20] Attar, H., Löber, L., Funk, A., Calin, M., Zhang, L. C., Prashanth, K. G., Eckert, J. (2015). Mechanical behavior of porous commercially pure Ti and Ti–TiB composite materials manufactured by selective laser melting. Materials Science and Engineering: A, 625, 350-356.
  • [21] Mensa, F. S., Muzzi, M., Spani, F., Tromba, G., Dullin, C., Di Giulio, A. (2022). When the Utility of Micro-Computed Tomography Collides with Insect Sample Preparation: An Entomologist User Guide to Solve Post-Processing Issues and Achieve Optimal 3D Models. Applied Sciences, 12(2), 769.
  • [22] Zanetti, E. M., Ciaramella, S., Calì, M., Pascoletti, G., Martorelli, M., Asero, R., Watts, D. C. (2018). Modal analysis for implant stability assessment: Sensitivity of this methodology for different implant designs. Dental Materials, 34(8), 1235-1245.
  • [23] Boas, F. E., Fleischmann, D. (2012). CT artifacts: causes and reduction techniques. Imaging Med, 4(2), 229-240.
  • [24] Yu Z, Thibault JB, Bouman CA, Sauer KD, Hsieh J: Fast model-based X-ray CT reconstruction using spatially nonhomogeneous ICD optimization. IEEE Trans Image Process 20(1), 161-175 (2011).
  • [25] Thibault JB, Sauer KD, Bouman CA, Hsieh J: A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys 34(11), 4526-4544 (2007)
  • [26] Boas FE, Fleischmann D: Evaluation of two iterative techniques for reducing metal artifacts in computed tomography. Radiology 259(3), 894-902 (2011).
  • [27] Eckel, S., Zscherpel, U., Huthwaite, P., Paul, N., Schumm, A. (2020). Radiographic film system classification and noise characterisation by a camera-based digitisation procedure. NDT & E International, 111, 102241.
  • [28] Başekim, C. Ç., Arslanoğlu, A. (2020). Bilgisayarlı Tomografide Radyasyon Doz Kontrolü ve Düşük Doz Çekim Teknikleri.
  • [29] Kamalian, S., Lev, M. H., Gupta, R. (2016). Computed tomography imaging and angiography–principles. Handbook of clinical neurology, 135, 3-20.
  • [30] Modjtahedi, B. S., Rong, A., Bobinski, M., McGahan, J., Morse, L. S. (2015). Imaging characteristics of intraocular foreign bodies: a comparative study of plain film X-ray, computed tomography, ultrasound, and magnetic resonance imaging. Retina, 35(1), 95-104.
  • [31] Sollmann, N., Mei, K., Hedderich, D. M., Maegerlein, C., Kopp, F. K., Löffler, M. T., Noël, P. B. (2019). Multi-detector CT imaging: impact of virtual tube current reduction and sparse sampling on detection of vertebral fractures. European radiology, 29(7), 3606-3616.
  • [32] De Chiffre, L., Carmignato, S., Kruth, J. P., Schmitt, R., Weckenmann, A. (2014). Industrial applications of computed tomography. CIRP annals, 63(2), 655-677.
  • [33] Wu, Y., Saxena, S., Xing, Y., Wang, Y., Li, C., Yung, W. K., Pecht, M. (2018). Analysis of manufacturing-induced defects and structural deformations in lithium-ion batteries using computed tomography. Energies, 11(4), 925.
  • [34] Kumar, V., Baburaj, V., Patel, S., Sharma, S., Vaishya, R. (2021). Does the use of intraoperative CT scan improve outcomes in Orthopaedic surgery? A systematic review and meta-analysis of 871 cases. Journal of clinical orthopaedics and trauma, 18, 216-223.
  • [35] Modi, Y. K., Sanadhya, S. (2018). Design and additive manufacturing of patient-specific cranial and pelvic bone implants from computed tomography data. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(10), 1-11.
  • [36] Khosravani, M. R., Reinicke, T. (2020). On the use of X-ray computed tomography in assessment of 3D-printed components. Journal of Nondestructive Evaluation, 39(4), 1-17.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Makaleler
Yazarlar

Hasan Kemal Sürmen 0000-0001-8045-9193

Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 17 Temmuz 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 4 Sayı: 2

Kaynak Göster

APA Sürmen, H. K. (2022). BİLGİSAYARLI TOMOGRAFİ İLE ÜÇ BOYUTLU (3B) TARAMA. Uluslararası Batı Karadeniz Mühendislik Ve Fen Bilimleri Dergisi, 4(2), 1-21.
AMA Sürmen HK. BİLGİSAYARLI TOMOGRAFİ İLE ÜÇ BOYUTLU (3B) TARAMA. UMÜFED. Aralık 2022;4(2):1-21.
Chicago Sürmen, Hasan Kemal. “BİLGİSAYARLI TOMOGRAFİ İLE ÜÇ BOYUTLU (3B) TARAMA”. Uluslararası Batı Karadeniz Mühendislik Ve Fen Bilimleri Dergisi 4, sy. 2 (Aralık 2022): 1-21.
EndNote Sürmen HK (01 Aralık 2022) BİLGİSAYARLI TOMOGRAFİ İLE ÜÇ BOYUTLU (3B) TARAMA. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi 4 2 1–21.
IEEE H. K. Sürmen, “BİLGİSAYARLI TOMOGRAFİ İLE ÜÇ BOYUTLU (3B) TARAMA”, UMÜFED, c. 4, sy. 2, ss. 1–21, 2022.
ISNAD Sürmen, Hasan Kemal. “BİLGİSAYARLI TOMOGRAFİ İLE ÜÇ BOYUTLU (3B) TARAMA”. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi 4/2 (Aralık 2022), 1-21.
JAMA Sürmen HK. BİLGİSAYARLI TOMOGRAFİ İLE ÜÇ BOYUTLU (3B) TARAMA. UMÜFED. 2022;4:1–21.
MLA Sürmen, Hasan Kemal. “BİLGİSAYARLI TOMOGRAFİ İLE ÜÇ BOYUTLU (3B) TARAMA”. Uluslararası Batı Karadeniz Mühendislik Ve Fen Bilimleri Dergisi, c. 4, sy. 2, 2022, ss. 1-21.
Vancouver Sürmen HK. BİLGİSAYARLI TOMOGRAFİ İLE ÜÇ BOYUTLU (3B) TARAMA. UMÜFED. 2022;4(2):1-21.