Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 11 Sayı: 2, 81 - 93, 30.08.2019

Öz

Kaynakça

  • Awad, N.H., Ali, M.Z., Suganthan, P.N., Jaser, E., 2016. Differential evolution with stochastic fractal search algorithm for global numerical optimization. In 2016 IEEE Congress on Evolutionary Computation (CEC), 3154-3161.
  • Bingöl, O., Güvenç, U., Duman, S., Paçacı, S., 2017. Stochastic fractal search with chaos. In 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), 1-6.
  • Dorigo, M., Di Caro, G., 1999. Ant colony optimization: a new meta-heuristic. In Proceedings of the 1999 congress on evolutionary computation-CEC99, 2, 1470-1477.
  • Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 39-43.
  • Holland, J.H., 1975. Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, MI.
  • Karaboğa, D., 2005. An idea based on honey bee swarm for numerical optimization, Technical report-tr06, Erciyes University, Engineering faculty, Computer engineering department.
  • Mandelbrot, B.B., 1979. Fractals: form, chance and dimension. Fractals: form, chance and dimension., by Mandelbrot, BB. San Francisco (CA, USA): WH Freeman & Co., 365p.
  • Mellal, M.A., Zio, E., 2016. A penalty guided stochastic fractal search approach for system reliability optimization. Reliability Engineering & System Safety, 152, 213-227.
  • Mirjalili, S., Mirjalili, S.M., Lewis, A., 2014. Grey wolf optimizer. Advances in engineering software, 69, 46-61.
  • Rahman, T.A., Tokhi, M.O., 2016. Enhanced stochastic fractal search algorithm with chaos. In 2016 7th IEEE Control and System Graduate Research Colloquium (ICSGRC), 22-27.
  • Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S., 2009. GSA: a gravitational search algorithm. Information sciences, 179(13), 2232-2248.
  • Salimi, H., 2015. Stochastic fractal search: a powerful metaheuristic algorithm. Knowledge-Based Systems, 75, 1-18.
  • Storn, R., Price, K., 1997. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341-359.
  • Wilcoxon, F., 1945. Individual comparisons by ranking methods. Biometrics bulletin, 1(6), 80-83.
  • Yang, X.S., 2008. Firefly algorithm. Nature-inspired metaheuristic algorithms, 20, 79-90.
  • Yang, X.S., Deb, S., 2009. Cuckoo search via Lévy flights. In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), 210-214.
  • Zhou, C., Sun, C., Wang, B., Wang, X., 2018. An improved stochastic fractal search algorithm for 3D protein structure prediction. Journal of molecular modeling, 24(6), 125.

SFA ALGORİTMA PARAMETRE DEĞİŞİMLERİNİN İNCELENMESİ ve UYGUN DEĞERLERİNİN TESPİTİ

Yıl 2019, Cilt: 11 Sayı: 2, 81 - 93, 30.08.2019

Öz

Stokastik fraktal arama
algoritması Salimi tarafından geliştirilen sezgisel bir optimizasyon
algoritmasıdır. Stokastik fraktal arama algoritmasında kullanıcının belirlemesi
gereken maksimum yayılım sayısı, başlangıç fraktal sayısı ve yayılım fonksiyonunda
kullanılacak Gauss yürüme fonksiyon seçimi parametreleri bulunmaktadır. Bu
çalışmada, stokastik fraktal arama algoritması parametrelere değişimlerinin
algoritma performansına etkileri incelenmiştir. Algoritma performansının
değerlendirilmesi için CEC-2017 test fonksiyonları kullanılmıştır. Elde edilen
test sonuçlarına göre en uygun parametre seçimleri belirlenmeye çalışılmıştır.

Kaynakça

  • Awad, N.H., Ali, M.Z., Suganthan, P.N., Jaser, E., 2016. Differential evolution with stochastic fractal search algorithm for global numerical optimization. In 2016 IEEE Congress on Evolutionary Computation (CEC), 3154-3161.
  • Bingöl, O., Güvenç, U., Duman, S., Paçacı, S., 2017. Stochastic fractal search with chaos. In 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), 1-6.
  • Dorigo, M., Di Caro, G., 1999. Ant colony optimization: a new meta-heuristic. In Proceedings of the 1999 congress on evolutionary computation-CEC99, 2, 1470-1477.
  • Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 39-43.
  • Holland, J.H., 1975. Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, MI.
  • Karaboğa, D., 2005. An idea based on honey bee swarm for numerical optimization, Technical report-tr06, Erciyes University, Engineering faculty, Computer engineering department.
  • Mandelbrot, B.B., 1979. Fractals: form, chance and dimension. Fractals: form, chance and dimension., by Mandelbrot, BB. San Francisco (CA, USA): WH Freeman & Co., 365p.
  • Mellal, M.A., Zio, E., 2016. A penalty guided stochastic fractal search approach for system reliability optimization. Reliability Engineering & System Safety, 152, 213-227.
  • Mirjalili, S., Mirjalili, S.M., Lewis, A., 2014. Grey wolf optimizer. Advances in engineering software, 69, 46-61.
  • Rahman, T.A., Tokhi, M.O., 2016. Enhanced stochastic fractal search algorithm with chaos. In 2016 7th IEEE Control and System Graduate Research Colloquium (ICSGRC), 22-27.
  • Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S., 2009. GSA: a gravitational search algorithm. Information sciences, 179(13), 2232-2248.
  • Salimi, H., 2015. Stochastic fractal search: a powerful metaheuristic algorithm. Knowledge-Based Systems, 75, 1-18.
  • Storn, R., Price, K., 1997. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341-359.
  • Wilcoxon, F., 1945. Individual comparisons by ranking methods. Biometrics bulletin, 1(6), 80-83.
  • Yang, X.S., 2008. Firefly algorithm. Nature-inspired metaheuristic algorithms, 20, 79-90.
  • Yang, X.S., Deb, S., 2009. Cuckoo search via Lévy flights. In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), 210-214.
  • Zhou, C., Sun, C., Wang, B., Wang, X., 2018. An improved stochastic fractal search algorithm for 3D protein structure prediction. Journal of molecular modeling, 24(6), 125.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Serdar Paçacı Bu kişi benim 0000-0002-7191-7452

Okan Bingöl 0000-0001-9817-7266

Uğur Güvenç 0000-0002-5193-7990

Yayımlanma Tarihi 30 Ağustos 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 11 Sayı: 2

Kaynak Göster

IEEE S. Paçacı, O. Bingöl, ve U. Güvenç, “SFA ALGORİTMA PARAMETRE DEĞİŞİMLERİNİN İNCELENMESİ ve UYGUN DEĞERLERİNİN TESPİTİ”, UTBD, c. 11, sy. 2, ss. 81–93, 2019.

Dergi isminin Türkçe kısaltması "UTBD" ingilizce kısaltması "IJTS" şeklindedir.

Dergimizde yayınlanan makalelerin tüm bilimsel sorumluluğu yazar(lar)a aittir. Editör, yardımcı editör ve yayıncı dergide yayınlanan yazılar için herhangi bir sorumluluk kabul etmez.