Araştırma Makalesi
BibTex RIS Kaynak Göster

Optimization of Struvite Precipitation for Landfill Leachate Treatment

Yıl 2018, Cilt: 23 Sayı: 1, 65 - 76, 19.04.2018
https://doi.org/10.17482/uumfd.373302

Öz

Sanitary landfill is the most preferred municipal solid waste disposal method. The production of highly polluted leachate is a major disadvantage of sanitary landfills. In this study, optimization of struvite precipitation to remove ammonium from landfill leachate was conducted by using Response Surface Methodology (RSM) and Central Composite Design (CCD).  Optimum struvite precipitation conditions were determined based upon 11 runs performed in CCD. A second-order polynomial functional model was fitted well to the results. The statistical analysis showed that two independent variables which are molar rates of Mg/N and N/P had significant effects on the ammonium removal efficiency. Maximum ammonium removal efficiency was 99.8% at a molar rate of 1.20 for Mg/N and 1.27 for N/P for a constant 9.2 pH value. The obtained results revealed that struvite used as pretreatment in anaerobic process can be modelled by using RSM. And also, RSM can be used to optimize required ammonium removal efficiency for lower Mg/N and N/P molar ratio which affects the performance of pretreatment method that designed for an anaerobic process having 300:5:1 ratio for COD/N/P. 

Kaynakça

  • Agdag, O.N. and Sponza, D.T. (2005) Anaerobic/aerobic treatment of municipal landfill leachate in sequential two-stage up-flow anaerobic sludge blanket reactor (UASB) / completely stirred tank reactor (CSTR) systems. Process Biochemistry, 40(2), 895–902.
  • Aneggi, E., Cabbai, V., Trovarelli, A. and Goi. D. (2012) Potential of Ceria-Based Catalysts for the Oxidation of Landfill Leachate by Heterogeneous Fenton Process. International Journal of Photoenergy, 2012, 1–8.
  • Argun, M.E., Alver, A. and Karatas, M. (2017) Optimization of landfill leachate oxidation at extreme conditions and determination of micropollutants removal, Desalination and Water Treatment, 90, 130-138.
  • Aygun, A., Yilmaz, T., Nas, B. and Berktay, A. (2012) Effect of temperature on fenton oxidation of young landfill leachate: kinetic assessment and sludge properties. Global NEST Journal, 14(4), 487–495.
  • Aziz, S.Q., Aziz, H.A., Yusoff, M.S., Bashir, M.J. and Umar, M. (2010) Leachate characterization in semi-aerobic and anaerobic sanitary landfills: A comparative study. Journal of Environmental Management, 91(12), 2608–2614.
  • Booker, N.A., Priestley, A.J. and Fraser I.H. (1999) Struvite formation in wastewater treatment plants: opportunities for nutrient recovery. Environmental Technology, 20, 777–782.
  • Brown, K., Ghoshdastidar, A.J., Hanmore, J., Frazee, J. and Tong, A.Z. (2013) Membrane bioreactor technology: A novel approach to the treatment of compost leachate. Waste Management, 33(11), 2188–2194.
  • Calli, B., Mertoglu, B. and Inanc, B. (2005) Landfill leachate management in Istanbul: applications and alternatives. Chemosphere, 59(6), 819–829.
  • Campos, J.C., Moura, D., Costa, A.P., Yokoyama, L., Araujo, F.V., Cammarota, M.C. and Cardillo, L. (2013) Evaluation of pH, alkalinity and temperature during air stripping process for ammonia removal from landfill leachate. Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances and Environmental Engineering, 48(9), 1105–1113.
  • Castillo, E., Vergara, M. and Moreno, Y. (2007) Landfill leachate treatment using a rotating biological contactor and an upward-flow anaerobic sludge bed reactor. Waste Management 27(5), 720–726.
  • Chen, M., He, S., Yi, Q. and Yang, M. (2010) Effect of chloride concentration on nitrogen removal from landfill leachate in sequencing batch reactor after MAP pretreatment. Water Science and Technology, 62(7), 1574–1579.
  • de Luna, M.D.G., Abarca, R.R.M., Su, C., Huang, Y. and Lu, M. (2015) Multivariate optimization of phosphate removal and recovery from aqueous solution by struvite crystallization in a fluidized-bed reactor. Desalination and Water Treatment, 55(2), 496-505.
  • Di Iaconi, C., Pagano, M., Ramadori, R and Lopez, A. (2010) Nitrogen recovery from a stabilized municipal landfill leachate. Bioresource Technology, 101(6), 1732–1736.
  • Durmusoglu, E. and Yilmaz, C. (2006) Evaluation and temporal variation of raw and pre-treated leachate quality from an active solid waste landfill. Water Air and Soil Pollution, 171, 359–382.
  • Erkan, H.S. and Apaydin, O. (2015) Final treatment of young, middle-aged, and stabilized leachates by Fenton process: optimization by response surface methodology, Desalination and Water Treatment, 54(2), 342-357.
  • Farrow, C. Crolla, A., Kinsley, C. and McBean, E. (2017) Ammonia removal from poultry manure leachate via struvite precipitation: a strategy for more efficient anaerobic digestion, International Journal of Environmental Technology and Management, 20(1-2), 87-100.
  • Ferraz, F.M., Povinelli, J. and Vieira, E.M. (2013) Ammonia removal from landfill leachate by air stripping and absorption. Environmental Technology, 34(15), 2317–2326.
  • Ghafari, S., Aziz, H.A., Isa, M.H. and Zinatizadeh, A.A. (2009) Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. Journal of Hazardous Materials, 163(2–3), 650–656.
  • Gunay, A., Karadag, D., Tosun, I. and Ozturk, M. (2008) Use of magnesit as a magnesium source for ammonium removal from leachate. Journal of Hazardous Materials, 156(1–3), 619–623
  • Huang, H., Liu, J., Xu, C. and Gao, F. (2016) Recycling struvite pyrolysate obtained at negative pressure for ammonia nitrogen removal from landfill leachate. Chemical Engineering Journal, 284, 1204-1211.
  • Kabdasli, I., Atalay, Z. and Tunay, O. (2017) Effect of solution composition on struvite crystallization, Chemical Technology and Biotechnology, 92(12), 2921-2928.
  • Kabdasli, I., Safak, A. and Tunay, O. (2008) Bench-scale evaluation of treatment schemes incorporating struvite precipitation for young landfill leachate, Waste Management, 28(11), 2386-2392.
  • Kabuk, H.A., Ilhan, F., Avsar, Y., Kurt, U., Apaydin, O. and Gonullu, M.T. (2013) Investigation of leachate treatment with electrocoagulation and optimization by response surface methodology. Clean – Soil, Air, Water, 42(5), 571–577.
  • Lee, W.C., Yusof, S., Hamid, N.S.A., and Baharin, B.S. (2006) Optimizing conditions for hot water extraction of banana juice using response surface methodology (RSM). Journal of Food Engineering, 75(4), 473–479.
  • Li, X.Z. and Zhao, Q.L. (2002) MAP precipitation from landfill leachate and seawater bittern waste. Environmental Technology, 23(9), 989–1000.
  • Li, X.Z., Zhao, Q.L. and Hao, X.D. (1999) Ammonium removal from landfill leachate by chemical precipitation. Waste Management, 19, 409–415.
  • Ozturk, I., Altinbas, M., Koyuncu, I., Arikan, O. and Gomec-Yangin, C. (2005) Advanced physico-chemical treatment experiences on young municipal landfill leachates. Waste Management, 23, 441–446.
  • Quan, X., Ye, C., Xiong, Y., Xiang, J. and Wang, F. (2010) Simultaneous removal of ammonia, P and COD from anaerobically digested piggery wastewater using an integrated process of chemical precipitation and air stripping. Journal of Hazardous Materials, 178(1-3), 326–332.
  • Rizkallah, M., El-Fadel, M., Saikaly, P.E., Ayoub, G.M., Darwiche, N. and Hashisho, J. (2013) Hollow-fiber membrane bioreactor for the treatment of high-strength landfill leachate. Waste Management and Research, 31(10), 1041–1051.
  • Subramaniam R., Gang, D.D., Nie, J., Bajpai, R., Dufreche, S., Baudier, J., Sharp, R. and Zappi M.E. (2017) Application of Response Surface Methodology for Optimization of Treatment for an Aged Landfill Leachate Using Fenton's Oxidation Reagent, Environmental Engineering Science, 34(10), 731-739.
  • Tonetti, A.L., de Camargo, C.C. and Guimaraes, J.R. (2016) Ammonia removal from landfill leachate by struvite formation: an alarming concentration of phosphorus in the treated effluent, Water Science and Technology, 4(12), 2970-2977.
  • Turker M. and Celen, I. (2007) Removal of ammonia as struvite from anaerobic digester effluents and recycling of magnesium and phosphate, Bioresource Technology, 98(8), 1529-1534.
  • Uysal, A. and Kuru, B. (2013) Magnesium ammonium phosphate production from wastewater through box–behnken design and its effect on nutrient element uptake in plants. Clean – Soil, Air, Water, 41(5), 447–454.
  • Welander, U. and Henrysson, T. (1998) Physical and chemical treatment of a nitrified leachate from a municipal landfill. Environmental Technology, 19(6), 591–599.
  • Wiszniowski, J., Surmacz-Gorska, J., Robert, D. and Weber, J.V. (2007) The effect of landfill leachate composition on organics and nitrogen removal in an activated sludge system with bentonite additive. Journal of Environmental Management, 85, 59–68.
  • Yetilmezsoy, K. and Sapci-Zengin, Z. (2009) Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. Journal of Hazardous Materials 166(1), 260–269.
  • Yilmaz, T., Aygun, A., Berktay, A. and Nas, B. (2010) Removal of COD and color from young municipal landfill leachate by fenton process. Environmental Technology, 31(14),1635–1640.
  • Yilmaz, T., Erdirencelebi, D. and Berktay, A. (2012) Effect of COD/SO4-2 ratio on anaerobic treatment of landfill leachate during the start-up period, Environmental Technology, 33(3), 313-320.
  • Zhang, T., Ding, L. and Ren, H. (2009) Pretreatment of ammonium removal from landfill leachate by chemical precipitation. Journal of Hazardous Materials, 166, 911–915.
  • Zhang, T., Li, Q., Ding, L., Ren, H., Xu, K., Wu, Y. and Sheng, D. (2011) Modeling assessment for ammonium nitrogen recovery from wastewater by chemical precipitation. Journal of Environmental Sciences, 23(6), 881–890.
  • Zhong, K. and Wang, Q. (2010) Optimization of ultrasonic extraction of polysaccharides from dried longan pulp using response surface methodology. Carbohydrate Polymers, 80(1),19–25.

SIZINTI SUYU ARITIMINDA STRÜVİT ÇÖKTÜRME OPTİMİZASYONU

Yıl 2018, Cilt: 23 Sayı: 1, 65 - 76, 19.04.2018
https://doi.org/10.17482/uumfd.373302

Öz

Evsel katı atıkların
bertarafında düzenli depolama yöntemi sıklıkla tercih edilmektedir. Çok kirli
sızıntı suyu oluşumu, düzenli depolama tesislerinin en önemli dezavantajıdır.
Bu çalışmada, Cevap Yüzey Yöntemi ve Merkezi Kompozit Tasarımı kullanılarak
sızıntı suyundan amonyum giderimine yönelik strüvit çöktürme optimizasyonu
yapılmıştır. Optimum strüvit çöktürme şartlarının belirlenmesi için 11 adet
deneysel çalışma yapılmıştır. Sonuçlar ikinci dereceden polinom fonksiyonel
model ile iyi uyum göstermiştir. İstatistiki analizler, Mg/N ve N/P molar oranı
bağımsız değişkenlerinin amonyum giderim verimi üzerine önemli etkisinin
olduğunu ortaya koymuştur. En yüksek amonyum giderim verimine %99,8 olarak; 9,2
sabit pH değerinde, Mg/N için 1,2 ve N/P için 1,27 molar oranlarında
ulaşılmıştır. Elde edilen sonuçlar, anaerobik proseste ön arıtım olarak
kullanılan strüvitin Cevap Yüzey Yöntemi kullanılarak modellenebildiğini ortaya
koymuştur. Ayrıca Cevap Yüzey Yöntemi; KOİ/N/P için 300:5:1 oranına sahip bir
anaerobik proses için tasarlanmış olan ön arıtım performansını etkileyen daha
düşük Mg/N ve N/P molar oranı için gerekli amonyum giderme verimliliğini
optimize etmek için kullanılabilir.

Kaynakça

  • Agdag, O.N. and Sponza, D.T. (2005) Anaerobic/aerobic treatment of municipal landfill leachate in sequential two-stage up-flow anaerobic sludge blanket reactor (UASB) / completely stirred tank reactor (CSTR) systems. Process Biochemistry, 40(2), 895–902.
  • Aneggi, E., Cabbai, V., Trovarelli, A. and Goi. D. (2012) Potential of Ceria-Based Catalysts for the Oxidation of Landfill Leachate by Heterogeneous Fenton Process. International Journal of Photoenergy, 2012, 1–8.
  • Argun, M.E., Alver, A. and Karatas, M. (2017) Optimization of landfill leachate oxidation at extreme conditions and determination of micropollutants removal, Desalination and Water Treatment, 90, 130-138.
  • Aygun, A., Yilmaz, T., Nas, B. and Berktay, A. (2012) Effect of temperature on fenton oxidation of young landfill leachate: kinetic assessment and sludge properties. Global NEST Journal, 14(4), 487–495.
  • Aziz, S.Q., Aziz, H.A., Yusoff, M.S., Bashir, M.J. and Umar, M. (2010) Leachate characterization in semi-aerobic and anaerobic sanitary landfills: A comparative study. Journal of Environmental Management, 91(12), 2608–2614.
  • Booker, N.A., Priestley, A.J. and Fraser I.H. (1999) Struvite formation in wastewater treatment plants: opportunities for nutrient recovery. Environmental Technology, 20, 777–782.
  • Brown, K., Ghoshdastidar, A.J., Hanmore, J., Frazee, J. and Tong, A.Z. (2013) Membrane bioreactor technology: A novel approach to the treatment of compost leachate. Waste Management, 33(11), 2188–2194.
  • Calli, B., Mertoglu, B. and Inanc, B. (2005) Landfill leachate management in Istanbul: applications and alternatives. Chemosphere, 59(6), 819–829.
  • Campos, J.C., Moura, D., Costa, A.P., Yokoyama, L., Araujo, F.V., Cammarota, M.C. and Cardillo, L. (2013) Evaluation of pH, alkalinity and temperature during air stripping process for ammonia removal from landfill leachate. Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances and Environmental Engineering, 48(9), 1105–1113.
  • Castillo, E., Vergara, M. and Moreno, Y. (2007) Landfill leachate treatment using a rotating biological contactor and an upward-flow anaerobic sludge bed reactor. Waste Management 27(5), 720–726.
  • Chen, M., He, S., Yi, Q. and Yang, M. (2010) Effect of chloride concentration on nitrogen removal from landfill leachate in sequencing batch reactor after MAP pretreatment. Water Science and Technology, 62(7), 1574–1579.
  • de Luna, M.D.G., Abarca, R.R.M., Su, C., Huang, Y. and Lu, M. (2015) Multivariate optimization of phosphate removal and recovery from aqueous solution by struvite crystallization in a fluidized-bed reactor. Desalination and Water Treatment, 55(2), 496-505.
  • Di Iaconi, C., Pagano, M., Ramadori, R and Lopez, A. (2010) Nitrogen recovery from a stabilized municipal landfill leachate. Bioresource Technology, 101(6), 1732–1736.
  • Durmusoglu, E. and Yilmaz, C. (2006) Evaluation and temporal variation of raw and pre-treated leachate quality from an active solid waste landfill. Water Air and Soil Pollution, 171, 359–382.
  • Erkan, H.S. and Apaydin, O. (2015) Final treatment of young, middle-aged, and stabilized leachates by Fenton process: optimization by response surface methodology, Desalination and Water Treatment, 54(2), 342-357.
  • Farrow, C. Crolla, A., Kinsley, C. and McBean, E. (2017) Ammonia removal from poultry manure leachate via struvite precipitation: a strategy for more efficient anaerobic digestion, International Journal of Environmental Technology and Management, 20(1-2), 87-100.
  • Ferraz, F.M., Povinelli, J. and Vieira, E.M. (2013) Ammonia removal from landfill leachate by air stripping and absorption. Environmental Technology, 34(15), 2317–2326.
  • Ghafari, S., Aziz, H.A., Isa, M.H. and Zinatizadeh, A.A. (2009) Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. Journal of Hazardous Materials, 163(2–3), 650–656.
  • Gunay, A., Karadag, D., Tosun, I. and Ozturk, M. (2008) Use of magnesit as a magnesium source for ammonium removal from leachate. Journal of Hazardous Materials, 156(1–3), 619–623
  • Huang, H., Liu, J., Xu, C. and Gao, F. (2016) Recycling struvite pyrolysate obtained at negative pressure for ammonia nitrogen removal from landfill leachate. Chemical Engineering Journal, 284, 1204-1211.
  • Kabdasli, I., Atalay, Z. and Tunay, O. (2017) Effect of solution composition on struvite crystallization, Chemical Technology and Biotechnology, 92(12), 2921-2928.
  • Kabdasli, I., Safak, A. and Tunay, O. (2008) Bench-scale evaluation of treatment schemes incorporating struvite precipitation for young landfill leachate, Waste Management, 28(11), 2386-2392.
  • Kabuk, H.A., Ilhan, F., Avsar, Y., Kurt, U., Apaydin, O. and Gonullu, M.T. (2013) Investigation of leachate treatment with electrocoagulation and optimization by response surface methodology. Clean – Soil, Air, Water, 42(5), 571–577.
  • Lee, W.C., Yusof, S., Hamid, N.S.A., and Baharin, B.S. (2006) Optimizing conditions for hot water extraction of banana juice using response surface methodology (RSM). Journal of Food Engineering, 75(4), 473–479.
  • Li, X.Z. and Zhao, Q.L. (2002) MAP precipitation from landfill leachate and seawater bittern waste. Environmental Technology, 23(9), 989–1000.
  • Li, X.Z., Zhao, Q.L. and Hao, X.D. (1999) Ammonium removal from landfill leachate by chemical precipitation. Waste Management, 19, 409–415.
  • Ozturk, I., Altinbas, M., Koyuncu, I., Arikan, O. and Gomec-Yangin, C. (2005) Advanced physico-chemical treatment experiences on young municipal landfill leachates. Waste Management, 23, 441–446.
  • Quan, X., Ye, C., Xiong, Y., Xiang, J. and Wang, F. (2010) Simultaneous removal of ammonia, P and COD from anaerobically digested piggery wastewater using an integrated process of chemical precipitation and air stripping. Journal of Hazardous Materials, 178(1-3), 326–332.
  • Rizkallah, M., El-Fadel, M., Saikaly, P.E., Ayoub, G.M., Darwiche, N. and Hashisho, J. (2013) Hollow-fiber membrane bioreactor for the treatment of high-strength landfill leachate. Waste Management and Research, 31(10), 1041–1051.
  • Subramaniam R., Gang, D.D., Nie, J., Bajpai, R., Dufreche, S., Baudier, J., Sharp, R. and Zappi M.E. (2017) Application of Response Surface Methodology for Optimization of Treatment for an Aged Landfill Leachate Using Fenton's Oxidation Reagent, Environmental Engineering Science, 34(10), 731-739.
  • Tonetti, A.L., de Camargo, C.C. and Guimaraes, J.R. (2016) Ammonia removal from landfill leachate by struvite formation: an alarming concentration of phosphorus in the treated effluent, Water Science and Technology, 4(12), 2970-2977.
  • Turker M. and Celen, I. (2007) Removal of ammonia as struvite from anaerobic digester effluents and recycling of magnesium and phosphate, Bioresource Technology, 98(8), 1529-1534.
  • Uysal, A. and Kuru, B. (2013) Magnesium ammonium phosphate production from wastewater through box–behnken design and its effect on nutrient element uptake in plants. Clean – Soil, Air, Water, 41(5), 447–454.
  • Welander, U. and Henrysson, T. (1998) Physical and chemical treatment of a nitrified leachate from a municipal landfill. Environmental Technology, 19(6), 591–599.
  • Wiszniowski, J., Surmacz-Gorska, J., Robert, D. and Weber, J.V. (2007) The effect of landfill leachate composition on organics and nitrogen removal in an activated sludge system with bentonite additive. Journal of Environmental Management, 85, 59–68.
  • Yetilmezsoy, K. and Sapci-Zengin, Z. (2009) Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. Journal of Hazardous Materials 166(1), 260–269.
  • Yilmaz, T., Aygun, A., Berktay, A. and Nas, B. (2010) Removal of COD and color from young municipal landfill leachate by fenton process. Environmental Technology, 31(14),1635–1640.
  • Yilmaz, T., Erdirencelebi, D. and Berktay, A. (2012) Effect of COD/SO4-2 ratio on anaerobic treatment of landfill leachate during the start-up period, Environmental Technology, 33(3), 313-320.
  • Zhang, T., Ding, L. and Ren, H. (2009) Pretreatment of ammonium removal from landfill leachate by chemical precipitation. Journal of Hazardous Materials, 166, 911–915.
  • Zhang, T., Li, Q., Ding, L., Ren, H., Xu, K., Wu, Y. and Sheng, D. (2011) Modeling assessment for ammonium nitrogen recovery from wastewater by chemical precipitation. Journal of Environmental Sciences, 23(6), 881–890.
  • Zhong, K. and Wang, Q. (2010) Optimization of ultrasonic extraction of polysaccharides from dried longan pulp using response surface methodology. Carbohydrate Polymers, 80(1),19–25.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Selim Dogan

Ahmet Aygün

Mehmet Emin Argun

Ertuğrul Esmeray

Yayımlanma Tarihi 19 Nisan 2018
Gönderilme Tarihi 31 Aralık 2017
Kabul Tarihi 19 Şubat 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 23 Sayı: 1

Kaynak Göster

APA Dogan, S., Aygün, A., Argun, M. E., Esmeray, E. (2018). Optimization of Struvite Precipitation for Landfill Leachate Treatment. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(1), 65-76. https://doi.org/10.17482/uumfd.373302
AMA Dogan S, Aygün A, Argun ME, Esmeray E. Optimization of Struvite Precipitation for Landfill Leachate Treatment. UUJFE. Nisan 2018;23(1):65-76. doi:10.17482/uumfd.373302
Chicago Dogan, Selim, Ahmet Aygün, Mehmet Emin Argun, ve Ertuğrul Esmeray. “Optimization of Struvite Precipitation for Landfill Leachate Treatment”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23, sy. 1 (Nisan 2018): 65-76. https://doi.org/10.17482/uumfd.373302.
EndNote Dogan S, Aygün A, Argun ME, Esmeray E (01 Nisan 2018) Optimization of Struvite Precipitation for Landfill Leachate Treatment. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23 1 65–76.
IEEE S. Dogan, A. Aygün, M. E. Argun, ve E. Esmeray, “Optimization of Struvite Precipitation for Landfill Leachate Treatment”, UUJFE, c. 23, sy. 1, ss. 65–76, 2018, doi: 10.17482/uumfd.373302.
ISNAD Dogan, Selim vd. “Optimization of Struvite Precipitation for Landfill Leachate Treatment”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23/1 (Nisan 2018), 65-76. https://doi.org/10.17482/uumfd.373302.
JAMA Dogan S, Aygün A, Argun ME, Esmeray E. Optimization of Struvite Precipitation for Landfill Leachate Treatment. UUJFE. 2018;23:65–76.
MLA Dogan, Selim vd. “Optimization of Struvite Precipitation for Landfill Leachate Treatment”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 23, sy. 1, 2018, ss. 65-76, doi:10.17482/uumfd.373302.
Vancouver Dogan S, Aygün A, Argun ME, Esmeray E. Optimization of Struvite Precipitation for Landfill Leachate Treatment. UUJFE. 2018;23(1):65-76.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr