Araştırma Makalesi
BibTex RIS Kaynak Göster

Nano Boyutlu Vücut Merkezli Kablosuz Ağların Alveolar Alanları ve İnsan Dokuları için Numerik Analizi

Yıl 2019, Cilt: 24 Sayı: 3, 127 - 140, 31.12.2019
https://doi.org/10.17482/uumfd.539155

Öz

Bu makalede, insan vücudu içerisinde Terahertz (THz) elektromanyetik dalgalarının yayılımı
araştırılmış ve alveolar boşlukları ve insan dokuları içindeki Nano Ölçekli Vücut Merkezli Kablosuz
Ağların sistem performansının bir modeli tartışılmıştır. THz frekans bandı kablosuz iletişimde, özellikle
nano ölçekli kablosuz iletişimde yeni uygulamalar sağlamaktadır. Bu makalede geliştirilen model, THz
bandının kablosuz iletişimi için nano ölçek ortamında Alveoların boşluklarında ve insan dokularından
yayılan EM dalgalarının toplam emilim kaybı, yol kaybı ve kapasite özelliklerini hesaplamaktadır.
Gürültü seviyesi ve yol kayıplarının modellenmesine dayanarak, kanal kapasitesi de hesaplanmıştır.
Sonuç olarak, Kablosuz Nano Telsiz Duyarga Ağlarının, insan vücudu üzerinden iletişim kurabildiği
gösterilmektedir. Modelin sayısal analizine göre 3 iletim penceresi olan ω1 = [0.01 THz - 0.5 THz], ω2 =
[0.58 THz - 0.74 THz] ve ω3 = [0.77 THz - 0.96 THz] bulunmuştur. Kablosuz Ağların THz iletişimde en
uzun ve düşük geçiş penceresi olan olan 0.01 THz - 0.5 THz aralığı akçigerlerde ve kan için Nano
Ölçekli Vücut Merkezli Kablosuz Ağlar evrensel nano düğüm tasarlayabilmek için modellenmiştir.

Kaynakça

  • Abbasi, Q. H., et al. (2016), Terahertz channel characterization inside the human skin for nano-scale body-centric networks, IEEE Transactions on Terahertz Science and Technology, 6.3, 427-434. doi: 10.1109/TTHZ.2016.2542213
  • Akkas, M. A. (2016), Nano-sensor capacity and SNR calculation according to transmit power estimation for body-centric nano-communications, Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACSSWS), 2016 3rd International Symposium on. IEEE. doi: 10.1109/IDAACSSWS.2016.7805785
  • Akkas, M. A. (2016), Terahertz Channel Modelling of Wireless Ultra-Compact Sensor Networks Using Electromagnetic Waves, IET Communications. doi: 10.1049/ietcom.2015.1202
  • Akkas, M. A., Akyildiz I. F., Radosveta S. (2012), Terahertz channel modeling of underground sensor networks in oil reservoirs, Global Communications Conference (GLOBECOM), 2012 IEEE. doi: 10.1109/GLOCOM.2012.6503169
  • Akyildiz I. F., Josep M. J., and Chong H. (2014), Terahertz band: Next frontier for wireless communications, Physical Communication 12, 16-32. doi: 10.1016/j.phycom.2014.01.006
  • Akyildiz, I. F., Zhi S., and Mehmet C. V. (2009) "Signal propagation techniques for wireless underground communication networks." Physical Communication 2.3, 167-183. doi: 10.1016/j.phycom.2009.03.004
  • Akyildiz, I., et al., (2015), The internet of bio-nano things, Communications Magazine, IEEE 53.3 32-40. doi: 10.1109/MCOM.2015.7060516. doi: 10.1109/JSAC.2010.100509 doi: 10.1109/JSAC.2010.100509
  • Akyildiz, Ian F., Fernando B., Cristina, B. (2008), Nanonetworks: A new communication paradigm, Computer Networks 52.12 2260-2279. doi: 10.1016/j.comnet.2008.04.001
  • Akyildiz, Ian F., Josep M. J. (2010) Electromagnetic wireless nanosensor networks." Nano Communication Networks, 1.1 3-19. doi: 10.1016/j.nancom.2010.04.001
  • Bush, S. F. (2010) Nanoscale Communication Networks, Artech House.
  • Couch, I. I., and W. Leon. (1994), Modern Communication Systems: principles and applications. Prentice Hall PTR.
  • Demirhan K., et al. . (February 26, 2010), In vivo deep tissue imaging with long wavelength multiphoton excitation. Proc. SPIE 7569, Multiphoton Microscopy in the Biomedical Sciences X, 75692R, doi:10.1117/12.842292
  • Feynman, R. P. (1960) "There's plenty of room at the bottom." Engineering and science 23.5: 22-36.
  • Friis, H. T. (1946), A note on a simple transmission formula, Proceedings of the IRE, 34.5, 254-256.
  • Goldsmith. (2005), A. Wireless communications, Cambridge university press.
  • Goody, R. M., and Yuk L. Y. (1989), Atmospheric radiation: theoretical basis, Atmospheric radiation: theoretical basis, 2nd ed., by Richard M. Goody and YL Yung. New York, NY: Oxford University Press, 1989.
  • Javed, I. T., Ijaz H. N. (2013), Frequency band selection and channel modeling for WNSN applications using simplenano, Communications (ICC), 2013 IEEE International Conference on. IEEE. doi: 10.1109/ICC.2013.6655509
  • Jornet J. M, and Akyildiz I. F. (2011), Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band, Wireless Communications, IEEE Transactions on 10.10, 3211-3221. doi: 10.1109/TWC.2011.081011.100545
  • Jornet, J. M., Akyildiz I. F. (2013), Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks, IEEE Journal on selected areas in communications, 31.12, 685-694. doi: 10.1109/JSAC.2013.SUP2.1213001
  • Kleine, T., Tadao N. (2011): A review on terahertz communications research, Journal of Infrared, Millimeter, and Terahertz Waves 32.2, 143-171. doi: 10.1007/s10762-010-9758-1
  • Llatser I., et al. (2012), Characterization of graphene-based nano-antennas in the terahertz band, 2012 6th European Conference on Antennas and Propagation (EUCAP). doi:10.1109/EuCAP.2012.6206598
  • Llatser, I., et al. (2012) Graphene-based nano-patch antenna for terahertz radiation, Photonics and Nanostructures-Fundamentals and Applications, 10.4, 353-358. doi: 10.1016/j.photonics.2012.05.011
  • Nakano, T. et al. (2012) Molecular communication and networking: Opportunities and challenges, IEEE transactions on nanobioscience, 11.2, 135-148. doi: 10.1109/TNB.2012.2191570
  • Petrov, V., D. Moltchanov, and Y. Koucheryavy. (2015), Interference and SINR in Dense Terahertz Networks, Vehicular Technology Conference (VTC Fall), 2015 IEEE 82nd. IEEE. doi: 10.1109/VTCFall.2015.7390991
  • Pierobon, M., Akyildiz, Ian F. (2010) A physical end-to-end model for molecular communication in nanonetworks, Selected Areas in Communications, IEEE Journal on 28.4 602-611. doi: 10.1109/JSAC.2010.100509
  • Rappaport, Theodore S.(1996), Wireless communications: principles and practice. Vol. 2. New Jersey: Prentice Hall PTR.
  • Rothman, L. S., et al. (2009), The HITRAN 2008 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer 110.9, 533-572. doi: 10.1016/j.jqsrt.2009.02.013
  • The beer-lambert law. Journal of chemical education, 1962, 39.7: 333.
  • Yang K. et al. (2015), Numerical analysis and characterization of THz propagation channel for body-centric nano-communications, Terahertz Science and Technology, IEEE Transactions on 5.3, 419-426. doi: 10.1109/TTHZ.2015.2419823
  • Yang, K. et al. (2016), Effects of non-flat interfaces in human skin tissues on the in-vivo tera-hertz communication channel, Nano Communication Networks, 8, 16-24. doi: 10.1016/j.nancom.2015.09.001
  • Zarepour, E. et al. (2015), Reliability Analysis of Time-Varying Wireless Nanoscale Sensor Networks, the proceedings of 15th IEEE Conference on Nanotechnology (IEEE-NANO), Rome, Italy. doi: 10.1109/NANO.2015.7388697 doi: 10.1109/ICC.2013.6655509

NUMERICAL ANALYSIS OF THE ALVEOLAR SPACES AND HUMAN TISSUES FOR NANOSCALE BODY-CENTRIC WIRELESS NETWORKS

Yıl 2019, Cilt: 24 Sayı: 3, 127 - 140, 31.12.2019
https://doi.org/10.17482/uumfd.539155

Öz

This paper investigates the propagation of Terahertz (THz) electromagnetic waves inside the
human body and discusses a model of the system performance of Nanoscale Body-Centric Wireless
Networks inside the alveolar spaces and human tissues. THz band wireless communication enables new
applications especially in nanoscale wireless communication. The model developed in this paper
calculates the total absorption loss, path loss and capacity properties of EM waves propagating through
the Alveolar Spaces and Human Tissues in nanoscale environment for THz band wireless
communication. Based on the modeling of noise level and path losses, the channel capacity is calculated.
The results show that Wireless Nanosensor Networks (WNSNs) can communicate through the human
body. According to the numerical analysis of the model several transmission windows which are ω1 =
[0.01 THz – 0.5 THz],          ω2 = [0.58 THz – 0.74 THz] and ω3 = [0.77 THz – 0.96 THz] have been found
for Nanoscale Body-Centric Wireless Networks. The longest and lowest transmission window which is in
the range of 0.01 THz – 0.5 THz values have been analyzed for blood, plasma, RCBs and water to design
universal nanonode for Nanoscale Body-Centric Wireless Networks at gases in lungs and blood.

Kaynakça

  • Abbasi, Q. H., et al. (2016), Terahertz channel characterization inside the human skin for nano-scale body-centric networks, IEEE Transactions on Terahertz Science and Technology, 6.3, 427-434. doi: 10.1109/TTHZ.2016.2542213
  • Akkas, M. A. (2016), Nano-sensor capacity and SNR calculation according to transmit power estimation for body-centric nano-communications, Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACSSWS), 2016 3rd International Symposium on. IEEE. doi: 10.1109/IDAACSSWS.2016.7805785
  • Akkas, M. A. (2016), Terahertz Channel Modelling of Wireless Ultra-Compact Sensor Networks Using Electromagnetic Waves, IET Communications. doi: 10.1049/ietcom.2015.1202
  • Akkas, M. A., Akyildiz I. F., Radosveta S. (2012), Terahertz channel modeling of underground sensor networks in oil reservoirs, Global Communications Conference (GLOBECOM), 2012 IEEE. doi: 10.1109/GLOCOM.2012.6503169
  • Akyildiz I. F., Josep M. J., and Chong H. (2014), Terahertz band: Next frontier for wireless communications, Physical Communication 12, 16-32. doi: 10.1016/j.phycom.2014.01.006
  • Akyildiz, I. F., Zhi S., and Mehmet C. V. (2009) "Signal propagation techniques for wireless underground communication networks." Physical Communication 2.3, 167-183. doi: 10.1016/j.phycom.2009.03.004
  • Akyildiz, I., et al., (2015), The internet of bio-nano things, Communications Magazine, IEEE 53.3 32-40. doi: 10.1109/MCOM.2015.7060516. doi: 10.1109/JSAC.2010.100509 doi: 10.1109/JSAC.2010.100509
  • Akyildiz, Ian F., Fernando B., Cristina, B. (2008), Nanonetworks: A new communication paradigm, Computer Networks 52.12 2260-2279. doi: 10.1016/j.comnet.2008.04.001
  • Akyildiz, Ian F., Josep M. J. (2010) Electromagnetic wireless nanosensor networks." Nano Communication Networks, 1.1 3-19. doi: 10.1016/j.nancom.2010.04.001
  • Bush, S. F. (2010) Nanoscale Communication Networks, Artech House.
  • Couch, I. I., and W. Leon. (1994), Modern Communication Systems: principles and applications. Prentice Hall PTR.
  • Demirhan K., et al. . (February 26, 2010), In vivo deep tissue imaging with long wavelength multiphoton excitation. Proc. SPIE 7569, Multiphoton Microscopy in the Biomedical Sciences X, 75692R, doi:10.1117/12.842292
  • Feynman, R. P. (1960) "There's plenty of room at the bottom." Engineering and science 23.5: 22-36.
  • Friis, H. T. (1946), A note on a simple transmission formula, Proceedings of the IRE, 34.5, 254-256.
  • Goldsmith. (2005), A. Wireless communications, Cambridge university press.
  • Goody, R. M., and Yuk L. Y. (1989), Atmospheric radiation: theoretical basis, Atmospheric radiation: theoretical basis, 2nd ed., by Richard M. Goody and YL Yung. New York, NY: Oxford University Press, 1989.
  • Javed, I. T., Ijaz H. N. (2013), Frequency band selection and channel modeling for WNSN applications using simplenano, Communications (ICC), 2013 IEEE International Conference on. IEEE. doi: 10.1109/ICC.2013.6655509
  • Jornet J. M, and Akyildiz I. F. (2011), Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band, Wireless Communications, IEEE Transactions on 10.10, 3211-3221. doi: 10.1109/TWC.2011.081011.100545
  • Jornet, J. M., Akyildiz I. F. (2013), Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks, IEEE Journal on selected areas in communications, 31.12, 685-694. doi: 10.1109/JSAC.2013.SUP2.1213001
  • Kleine, T., Tadao N. (2011): A review on terahertz communications research, Journal of Infrared, Millimeter, and Terahertz Waves 32.2, 143-171. doi: 10.1007/s10762-010-9758-1
  • Llatser I., et al. (2012), Characterization of graphene-based nano-antennas in the terahertz band, 2012 6th European Conference on Antennas and Propagation (EUCAP). doi:10.1109/EuCAP.2012.6206598
  • Llatser, I., et al. (2012) Graphene-based nano-patch antenna for terahertz radiation, Photonics and Nanostructures-Fundamentals and Applications, 10.4, 353-358. doi: 10.1016/j.photonics.2012.05.011
  • Nakano, T. et al. (2012) Molecular communication and networking: Opportunities and challenges, IEEE transactions on nanobioscience, 11.2, 135-148. doi: 10.1109/TNB.2012.2191570
  • Petrov, V., D. Moltchanov, and Y. Koucheryavy. (2015), Interference and SINR in Dense Terahertz Networks, Vehicular Technology Conference (VTC Fall), 2015 IEEE 82nd. IEEE. doi: 10.1109/VTCFall.2015.7390991
  • Pierobon, M., Akyildiz, Ian F. (2010) A physical end-to-end model for molecular communication in nanonetworks, Selected Areas in Communications, IEEE Journal on 28.4 602-611. doi: 10.1109/JSAC.2010.100509
  • Rappaport, Theodore S.(1996), Wireless communications: principles and practice. Vol. 2. New Jersey: Prentice Hall PTR.
  • Rothman, L. S., et al. (2009), The HITRAN 2008 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer 110.9, 533-572. doi: 10.1016/j.jqsrt.2009.02.013
  • The beer-lambert law. Journal of chemical education, 1962, 39.7: 333.
  • Yang K. et al. (2015), Numerical analysis and characterization of THz propagation channel for body-centric nano-communications, Terahertz Science and Technology, IEEE Transactions on 5.3, 419-426. doi: 10.1109/TTHZ.2015.2419823
  • Yang, K. et al. (2016), Effects of non-flat interfaces in human skin tissues on the in-vivo tera-hertz communication channel, Nano Communication Networks, 8, 16-24. doi: 10.1016/j.nancom.2015.09.001
  • Zarepour, E. et al. (2015), Reliability Analysis of Time-Varying Wireless Nanoscale Sensor Networks, the proceedings of 15th IEEE Conference on Nanotechnology (IEEE-NANO), Rome, Italy. doi: 10.1109/NANO.2015.7388697 doi: 10.1109/ICC.2013.6655509
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Mustafa Alper Akkaş 0000-0003-0185-0464

Yayımlanma Tarihi 31 Aralık 2019
Gönderilme Tarihi 13 Mart 2019
Kabul Tarihi 18 Eylül 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 24 Sayı: 3

Kaynak Göster

APA Akkaş, M. A. (2019). NUMERICAL ANALYSIS OF THE ALVEOLAR SPACES AND HUMAN TISSUES FOR NANOSCALE BODY-CENTRIC WIRELESS NETWORKS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(3), 127-140. https://doi.org/10.17482/uumfd.539155
AMA Akkaş MA. NUMERICAL ANALYSIS OF THE ALVEOLAR SPACES AND HUMAN TISSUES FOR NANOSCALE BODY-CENTRIC WIRELESS NETWORKS. UUJFE. Aralık 2019;24(3):127-140. doi:10.17482/uumfd.539155
Chicago Akkaş, Mustafa Alper. “NUMERICAL ANALYSIS OF THE ALVEOLAR SPACES AND HUMAN TISSUES FOR NANOSCALE BODY-CENTRIC WIRELESS NETWORKS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, sy. 3 (Aralık 2019): 127-40. https://doi.org/10.17482/uumfd.539155.
EndNote Akkaş MA (01 Aralık 2019) NUMERICAL ANALYSIS OF THE ALVEOLAR SPACES AND HUMAN TISSUES FOR NANOSCALE BODY-CENTRIC WIRELESS NETWORKS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 3 127–140.
IEEE M. A. Akkaş, “NUMERICAL ANALYSIS OF THE ALVEOLAR SPACES AND HUMAN TISSUES FOR NANOSCALE BODY-CENTRIC WIRELESS NETWORKS”, UUJFE, c. 24, sy. 3, ss. 127–140, 2019, doi: 10.17482/uumfd.539155.
ISNAD Akkaş, Mustafa Alper. “NUMERICAL ANALYSIS OF THE ALVEOLAR SPACES AND HUMAN TISSUES FOR NANOSCALE BODY-CENTRIC WIRELESS NETWORKS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/3 (Aralık 2019), 127-140. https://doi.org/10.17482/uumfd.539155.
JAMA Akkaş MA. NUMERICAL ANALYSIS OF THE ALVEOLAR SPACES AND HUMAN TISSUES FOR NANOSCALE BODY-CENTRIC WIRELESS NETWORKS. UUJFE. 2019;24:127–140.
MLA Akkaş, Mustafa Alper. “NUMERICAL ANALYSIS OF THE ALVEOLAR SPACES AND HUMAN TISSUES FOR NANOSCALE BODY-CENTRIC WIRELESS NETWORKS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 24, sy. 3, 2019, ss. 127-40, doi:10.17482/uumfd.539155.
Vancouver Akkaş MA. NUMERICAL ANALYSIS OF THE ALVEOLAR SPACES AND HUMAN TISSUES FOR NANOSCALE BODY-CENTRIC WIRELESS NETWORKS. UUJFE. 2019;24(3):127-40.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr