Araştırma Makalesi
BibTex RIS Kaynak Göster

Sugeno Fuzzy Logic Approach to Estimating Unconfined Compressive Strength

Yıl 2021, Cilt: 26 Sayı: 1, 97 - 108, 30.04.2021
https://doi.org/10.17482/uumfd.863121

Öz

The aim of this study is to predict the unconfined compressive strength of sand grouted with ultrafine cement using the Sugeno fuzzy inference system and to compare the results with the predictions obtained by the regression models (linear and non-linear). Four types of regression models namely linear, polynomial, power, and exponential are used in the analyses. Injection pressure values are used as input parameters while unconfined compressive strength values are used as output parameters. Seven membership functions for the input parameter and linear functions for the output parameter are assigned for Sugeno fuzzy inference system. To evaluate the accuracy of the models, coefficient of determination (R^2) and mean squared error (MSE) are used. Based on the calculated R^2 and MSE values, it is observed that the developed models reveal good results in predicting the strength of sand grouted with ultrafine cement. According to the performance of the models, Sugeno fuzzy logic, polynomial, linear, power, and exponential regression models have the most successive predictions, respectively. Sugeno fuzzy logic provides an advantage due to easy to understand and similar mechanism with the human thinking, inference, and decision-making systems. It has been observed that the Sugeno fuzzy logic model can be an alternative to the regression method due to the advantages and the successive prediction

Kaynakça

  • Arbabsiar, M.H., Farsangi M.A.E. and Mansouri, H. (2020) Fuzzy logic modelling to predict the level of geotechnical risks in rock Tunnel Boring Machine (TBM) tunneling, Rudarsko Geolosko Naftni Zbornik, 35(2), 1-14. doi:10.17794/rgn.2020.2.1.
  • Avci, E. (2019) Silica Fume Effect on Engineering Properties of Superfine Cement–Grouted Sands, Journal of Materials in Civil Engineering, 31(11), 04019269-1-13, doi:10.1061/(ASCE)MT.1943-5533.0002928.
  • Chen, J., Hagan, P. and Saydam, S. (2018) Shear behaviour of a cement grout tested in the direct shear test, Construction and Building Materials, 166, 271-279. doi:10.1061/(ASCE)MT.1943-5533.0002928.
  • Cho, H.C., Han, S.J., Heo, I, Kang, H., Kang, W.H. and K.S. Kim, K.S. (2020) Heating Temperature Prediction of Concrete Structure Damaged by Fire Using a Bayesian Approach, Sustainability, 12(10), 1-18. doi:10.3390/su12104225.
  • Christodoulou, D., Droudakis, A., Pantazopoulos, I.A., Markou, I. and Atmatzidis, D.K. (2009) Groutability and Effectiveness of Microfine Cement Grouts, Proceedings of the 17th International Conference on Soil Mechanics & Geotechnical Engineering, vol. 3, Egypt, 2232-2235. doi:10.3233/978-1-60750-031-5-2232. doi:10.3233/978-1-60750-031-5-2232.
  • Dhanasekar, T. and Rajakumar, P. (2018) Effective Utilization of Fuzzy Logic in Stabilize Road Construction with RBI Grade-81, International Journal of Civil Engineering and Technology (IJCIET), 9(1), 41–47. Article ID: IJCIET_09_01_006.
  • Elmas, Ç. (2011) Yapay Zeka Uygulamaları, Seçkin Yayıncılık, Ankara.
  • Hashimoto, K., Nishihara, S. Oji, S., Kanazawa, T., Nishie, S., Seko, I., Hyodo, T. and Tsukamato, Y. (2016) Field testing of permeation grouting using microfine cement, Ground Improvement, 169(2), 134-142, doi:10.1680/jgrim.15.00030.
  • Jaforpour, P., Moayed, R.Z. and Kordnaeij, A. (2020) Yield stress for zeolite-cement grouted sand, Construction and Building Materials, 247(30), 1-12. doi:10.1016/j.conbuildmat.2020.118639.
  • Karol, R.H. (2003) Chemical Grouting and Soil Stabilization, Marcel Dekker Inc, New Jersey/USA.
  • Mamdani, E.H. and Assilian, S. (1975) An experiment in linguistic synthesis with a fuzzy logic controller”, International Journal of Man–Machine Studies, 7(1), 1–13. doi:10.1016/S0020-7373(75)80002-2.
  • Markou I.N. and A. I. Droudakis, A.I. (2013) Shear Strength of Microfine Cement Grouted Sands, Ground Improvement, 166(3), 177-186.
  • Mishra, D.A. and Basu, A. (2013) Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system, Engineering Geology, 160, 54-68. doi:10.1016/j.enggeo.2013.04.004.
  • Nonlevier, E. (1989) Grouting Theory and Practice, Elsevier Science Publishers B.V, Amsterdam/Netherland.
  • Perret, S., Palardy, D. and Ballivy, G. (2000) Rheological Behaviour and Setting Time of Microfine Cement Based Grouts, ACI Materials Journal, 97(4), 472-477.
  • Rawlings, C.G., Hellawell E.E and Kilkenny, W.M. (2000) Grouting for Ground Engineering, Construction Industry Research and Information Association (CIRA), London/UK.
  • Schwarz L.G. and Krizek, R.J. (1994) Effect of preparation technique on permeability and strength of cement-grouted sand, Geotechnical Testing Journal, 17(4), 434–443. doi:10.1520/GTJ10304J.
  • Shroff A.V. and Shah, D.L. (1999) Grouting Technology in Tunneling and Dam Construction, A.A. Balkema, Rotterdam/Netherlands.
  • Sujatha, A., Govindaraju, L. and Shivakumar, N. (2020) Application of Fuzzy Rule Based System For Highway Research Board Classification of Soils, International Journal of Fuzzy Logic Systems (IJFLS), 10(2), 1-14. doi:10.5121/ijfls.2020.10201.
  • Sünbül, A.B., Uzun, R. and Erkaymaz, H. (2015) Zemin sıvılaşma potansiyelinin bulanık mantık ile modellenmesi, Karaelmas Fen ve Mühendislik Dergisi, 5(2), 101-104.
  • Takagi, T. and Sugeno, M. (1985) Fuzzy Identification of Systems and Its Application to Modelling and Control”, IEEE Transactions on Systems, Man, and Cybernetics, 15(1), 116-132. doi:10.1109/TSMC.1985.6313399.
  • Yıldırım, E., Doğan, E., Karavul, C., Aşçı, M., Özçep, F. and Arman, H. (2007) Classification Of The Soils Using Mamdani – Fuzzy Inference System, International Earthquake Symposium, 578-582, Kocaeli.
  • Yıldırım, E., Sertkaya, C. and Karavul, C. (2007) Estimation of Shear Wave Velocity Using Sugeno Fuzzy Logic and Artificial Neural Networks Models, Electronic Letters on Science & Engineering, 3(1), 1-9.
  • Zadeh, L.A. (1965) Fuzzy sets, Information and Control, 8(3), 338–353.
  • Zorluer, İ., Icaga, Y., Yurtcu, S. and Tosun, H. (2010) Application of a fuzzy rule-based method for the determination of clay dispersibility, Geoderma, 160(2), 189-196. doi:10.1016/j.geoderma.2010.09.017.

SERBEST BASINÇ DAYANIMININ TAHMİNİNDE SUGENO BULANIK MANTIK YAKLAŞIMI

Yıl 2021, Cilt: 26 Sayı: 1, 97 - 108, 30.04.2021
https://doi.org/10.17482/uumfd.863121

Öz

Bu çalışmanın amacı ince taneli çimento ile enjeksiyon yapılmış kum zeminlerin serbest basınç dayanımı değerinin Sugeno bulanık çıkarım sistemiyle tahmin edilmesi ve regresyon yöntemleriyle (doğrusal ve doğrusal olmayan) elde edilen tahmin sonuçlarıyla karşılaştırılmasıdır. Regresyon analizi için dört farklı denklem (doğrusal, polinom, üstel ve eksponansiyel fonksiyonlar) kullanılmıştır. Buna göre serbest basınç dayanımının tahminine yönelik olarak toplam 5 model oluşturulmuştur. Girdi parametresi olarak enjeksiyon basıncı değerleri çıktı parametresi (tahmin edilen parametre) olarak ise serbest basınç dayanım değerleri kullanılmıştır. Sugeno bulanık mantık (Sugeno BM) yöntemi oluşturulurken girdi parametresi için 7 üyelik fonksiyonu tanımlanmış, çıktı üyelik fonksiyonları ise lineer olarak alınmıştır. Modellerin tahmin performansını ölçmek amacıyla determinasyon katsayısı (R^2) ve Ortalama Karesel Hata (OKH) ölçütleri kullanılmıştır. Hesaplanan R^2 ve OKH değerlerine göre geliştirilen modellerin ince taneli çimento ile enjeksiyon yapılmış kum zeminlerin serbest basınç dayanım değerlerini tahmin etmede oldukça iyi sonuçlar verdiği görülmüştür. Modellerin tahmin performanslarına göre başarı sıralaması Sugeno BM modeli, polinom, doğrusal, üstel ve eksponansiyel denklemleri ile oluşturulan regresyon modelleri şeklindedir. Sugeno BM yöntemi, insanın düşünme mekanizmasına, çıkarım ve karar verme sistemine yakın olduğundan dolayı anlaşılmasının kolay olması bir avantaj sağlamaktadır. Sugeno BM yönteminin avantajları ve geliştirilen Sugeno BM modelinin tahmin başarısından dolayı regresyon yöntemine alternatif olabileceği görülmüştür.

Kaynakça

  • Arbabsiar, M.H., Farsangi M.A.E. and Mansouri, H. (2020) Fuzzy logic modelling to predict the level of geotechnical risks in rock Tunnel Boring Machine (TBM) tunneling, Rudarsko Geolosko Naftni Zbornik, 35(2), 1-14. doi:10.17794/rgn.2020.2.1.
  • Avci, E. (2019) Silica Fume Effect on Engineering Properties of Superfine Cement–Grouted Sands, Journal of Materials in Civil Engineering, 31(11), 04019269-1-13, doi:10.1061/(ASCE)MT.1943-5533.0002928.
  • Chen, J., Hagan, P. and Saydam, S. (2018) Shear behaviour of a cement grout tested in the direct shear test, Construction and Building Materials, 166, 271-279. doi:10.1061/(ASCE)MT.1943-5533.0002928.
  • Cho, H.C., Han, S.J., Heo, I, Kang, H., Kang, W.H. and K.S. Kim, K.S. (2020) Heating Temperature Prediction of Concrete Structure Damaged by Fire Using a Bayesian Approach, Sustainability, 12(10), 1-18. doi:10.3390/su12104225.
  • Christodoulou, D., Droudakis, A., Pantazopoulos, I.A., Markou, I. and Atmatzidis, D.K. (2009) Groutability and Effectiveness of Microfine Cement Grouts, Proceedings of the 17th International Conference on Soil Mechanics & Geotechnical Engineering, vol. 3, Egypt, 2232-2235. doi:10.3233/978-1-60750-031-5-2232. doi:10.3233/978-1-60750-031-5-2232.
  • Dhanasekar, T. and Rajakumar, P. (2018) Effective Utilization of Fuzzy Logic in Stabilize Road Construction with RBI Grade-81, International Journal of Civil Engineering and Technology (IJCIET), 9(1), 41–47. Article ID: IJCIET_09_01_006.
  • Elmas, Ç. (2011) Yapay Zeka Uygulamaları, Seçkin Yayıncılık, Ankara.
  • Hashimoto, K., Nishihara, S. Oji, S., Kanazawa, T., Nishie, S., Seko, I., Hyodo, T. and Tsukamato, Y. (2016) Field testing of permeation grouting using microfine cement, Ground Improvement, 169(2), 134-142, doi:10.1680/jgrim.15.00030.
  • Jaforpour, P., Moayed, R.Z. and Kordnaeij, A. (2020) Yield stress for zeolite-cement grouted sand, Construction and Building Materials, 247(30), 1-12. doi:10.1016/j.conbuildmat.2020.118639.
  • Karol, R.H. (2003) Chemical Grouting and Soil Stabilization, Marcel Dekker Inc, New Jersey/USA.
  • Mamdani, E.H. and Assilian, S. (1975) An experiment in linguistic synthesis with a fuzzy logic controller”, International Journal of Man–Machine Studies, 7(1), 1–13. doi:10.1016/S0020-7373(75)80002-2.
  • Markou I.N. and A. I. Droudakis, A.I. (2013) Shear Strength of Microfine Cement Grouted Sands, Ground Improvement, 166(3), 177-186.
  • Mishra, D.A. and Basu, A. (2013) Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system, Engineering Geology, 160, 54-68. doi:10.1016/j.enggeo.2013.04.004.
  • Nonlevier, E. (1989) Grouting Theory and Practice, Elsevier Science Publishers B.V, Amsterdam/Netherland.
  • Perret, S., Palardy, D. and Ballivy, G. (2000) Rheological Behaviour and Setting Time of Microfine Cement Based Grouts, ACI Materials Journal, 97(4), 472-477.
  • Rawlings, C.G., Hellawell E.E and Kilkenny, W.M. (2000) Grouting for Ground Engineering, Construction Industry Research and Information Association (CIRA), London/UK.
  • Schwarz L.G. and Krizek, R.J. (1994) Effect of preparation technique on permeability and strength of cement-grouted sand, Geotechnical Testing Journal, 17(4), 434–443. doi:10.1520/GTJ10304J.
  • Shroff A.V. and Shah, D.L. (1999) Grouting Technology in Tunneling and Dam Construction, A.A. Balkema, Rotterdam/Netherlands.
  • Sujatha, A., Govindaraju, L. and Shivakumar, N. (2020) Application of Fuzzy Rule Based System For Highway Research Board Classification of Soils, International Journal of Fuzzy Logic Systems (IJFLS), 10(2), 1-14. doi:10.5121/ijfls.2020.10201.
  • Sünbül, A.B., Uzun, R. and Erkaymaz, H. (2015) Zemin sıvılaşma potansiyelinin bulanık mantık ile modellenmesi, Karaelmas Fen ve Mühendislik Dergisi, 5(2), 101-104.
  • Takagi, T. and Sugeno, M. (1985) Fuzzy Identification of Systems and Its Application to Modelling and Control”, IEEE Transactions on Systems, Man, and Cybernetics, 15(1), 116-132. doi:10.1109/TSMC.1985.6313399.
  • Yıldırım, E., Doğan, E., Karavul, C., Aşçı, M., Özçep, F. and Arman, H. (2007) Classification Of The Soils Using Mamdani – Fuzzy Inference System, International Earthquake Symposium, 578-582, Kocaeli.
  • Yıldırım, E., Sertkaya, C. and Karavul, C. (2007) Estimation of Shear Wave Velocity Using Sugeno Fuzzy Logic and Artificial Neural Networks Models, Electronic Letters on Science & Engineering, 3(1), 1-9.
  • Zadeh, L.A. (1965) Fuzzy sets, Information and Control, 8(3), 338–353.
  • Zorluer, İ., Icaga, Y., Yurtcu, S. and Tosun, H. (2010) Application of a fuzzy rule-based method for the determination of clay dispersibility, Geoderma, 160(2), 189-196. doi:10.1016/j.geoderma.2010.09.017.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Eray Yıldırım 0000-0002-5134-0625

Eyubhan Avcı 0000-0001-7206-0158

Bahadır Yılmaz 0000-0001-8328-5328

Yayımlanma Tarihi 30 Nisan 2021
Gönderilme Tarihi 17 Ocak 2021
Kabul Tarihi 1 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 26 Sayı: 1

Kaynak Göster

APA Yıldırım, E., Avcı, E., & Yılmaz, B. (2021). SERBEST BASINÇ DAYANIMININ TAHMİNİNDE SUGENO BULANIK MANTIK YAKLAŞIMI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(1), 97-108. https://doi.org/10.17482/uumfd.863121
AMA Yıldırım E, Avcı E, Yılmaz B. SERBEST BASINÇ DAYANIMININ TAHMİNİNDE SUGENO BULANIK MANTIK YAKLAŞIMI. UUJFE. Nisan 2021;26(1):97-108. doi:10.17482/uumfd.863121
Chicago Yıldırım, Eray, Eyubhan Avcı, ve Bahadır Yılmaz. “SERBEST BASINÇ DAYANIMININ TAHMİNİNDE SUGENO BULANIK MANTIK YAKLAŞIMI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, sy. 1 (Nisan 2021): 97-108. https://doi.org/10.17482/uumfd.863121.
EndNote Yıldırım E, Avcı E, Yılmaz B (01 Nisan 2021) SERBEST BASINÇ DAYANIMININ TAHMİNİNDE SUGENO BULANIK MANTIK YAKLAŞIMI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 1 97–108.
IEEE E. Yıldırım, E. Avcı, ve B. Yılmaz, “SERBEST BASINÇ DAYANIMININ TAHMİNİNDE SUGENO BULANIK MANTIK YAKLAŞIMI”, UUJFE, c. 26, sy. 1, ss. 97–108, 2021, doi: 10.17482/uumfd.863121.
ISNAD Yıldırım, Eray vd. “SERBEST BASINÇ DAYANIMININ TAHMİNİNDE SUGENO BULANIK MANTIK YAKLAŞIMI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/1 (Nisan 2021), 97-108. https://doi.org/10.17482/uumfd.863121.
JAMA Yıldırım E, Avcı E, Yılmaz B. SERBEST BASINÇ DAYANIMININ TAHMİNİNDE SUGENO BULANIK MANTIK YAKLAŞIMI. UUJFE. 2021;26:97–108.
MLA Yıldırım, Eray vd. “SERBEST BASINÇ DAYANIMININ TAHMİNİNDE SUGENO BULANIK MANTIK YAKLAŞIMI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 26, sy. 1, 2021, ss. 97-108, doi:10.17482/uumfd.863121.
Vancouver Yıldırım E, Avcı E, Yılmaz B. SERBEST BASINÇ DAYANIMININ TAHMİNİNDE SUGENO BULANIK MANTIK YAKLAŞIMI. UUJFE. 2021;26(1):97-108.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr