Tez Özeti
BibTex RIS Kaynak Göster

Di (2-Etilhekzil) Fitalatın Ratlarda Doku Lipid Peroksidasyonu ve Antioksidan Düzeylerine Etkisi

Yıl 2022, , 301 - 311, 30.12.2022
https://doi.org/10.52976/vansaglik.1134285

Öz

ÖZET
Amaç: Bu çalışma ratlarda di (2-etilhekzil) fitalatın (DEHP) karaciğer, böbrek ve uterus dokularında lipid peroksidasyonu ve antioksidan düzeyleri üzerine etkisini irdelemek amacıyla planlandı.
Materyal Metot: Çalışmada 3-4 aylık, 250-300 gr ağırlığında 40 Wistar-Albino dişi rat kullanıldı. Ratlar 5 gruba ayrıldı (1. grup: kontrol, 2. grup: yağ kontrol, 3. grup: 20 mg fitalat, 4. grup: 100 mg fitalat, 5. grup: 500 mg fitalat grubu). Fitalat ve mısır yağı karışımı gastrik gavaj ile verildi. Deneme süresi 14 gün olarak planlandı. Çalışmanın sonunda alınan karaciğer, böbrek ve uterus doku örneklerinde vitamin C, redükte glutatyon (GSH), katalaz (CAT), malondialdehit (MDA) ve total protein düzeyleri ölçüldü.
Bulgular: Karaciğer dokusu C vitamini miktarı tüm gruplarda azaldı (p<0.001). GSH seviyeleri 20 mg ve 100 mg fitalat gruplarında arttı, 500 mg fitalat grubunda azaldı (p<0.05). Total protein miktarı tüm gruplarda azaldı. CAT ve MDA düzeylerinde ise arttı (p<0.05). Böbrek dokusu C vitamini miktarı tüm gruplarda azalırken; GSH, CAT, MDA ve total protein düzeyleri tüm gruplarda arttı (p<0.001). Uterus dokusu C vitamini miktarı tüm gruplarda azaldı (p<0.01). GSH, CAT, MDA ve total protein düzeyleri 100 mg ve 500 mg fitalat gruplarında arttı (p<0.001). Total protein miktarı 20 mg fitalat grubunda azaldı.
Sonuç: Vitamin C, GSH, CAT, MDA ve total protein düzeylerinde gözlenen değişiklikler, oksidatif stres nedeniyle hücrelerde olası hasarın meydana gelmiş olabileceğini göstermektedir. Maruz kaldığımız birçok kimyasalın zararlı etkilerinden korunmak için bu konularda yapılan çalışmaların öne çıkarılması, epidemiyolojik çalışmalarla sonuçların detaylı olarak araştırılması ve sonuçların kamuoyu ile paylaşılması gerekmektedir. Bu sebeple vücutta oksidatif strese neden olabilecek DEHP içeren plastik ürünlerin kullanımından mümkün olduğunca kaçınılmalıdır.

Kaynakça

  • Aebi H. (1984). Catalase in vitro. Enzymol; 105:121-126.
  • Alışık M, Işik MU. (2021). The Relationship between Choroidal Thickness and Intracellular Oxidised-reduced Glutathione and Extracellular Thiol–disulfide Homeostasis at Different Stages of Diabetic Retinopathy. Current Eye Research, 46(3), 367-372.
  • Alisik M, Neselioglu S, Erel O. (2019). A colorimetric method to measure oxidized, reduced and total glutathione levels in erythrocytes. Journal of Laboratory Medicine, 43(5), 269-277.
  • Allen SF, Ellis F, Mitchell C, Wang X, Boogert NJ, Lin CY, ve ark. (2021). Phthalate diversity in eggs and associations with oxidative stress in the European herring gull (Larus argentatus). Marine pollution bulletin, 169, 112564. https://doi.org/10.1016/j.marpolbul.2021.112564
  • Asimakopoulos AG, Xue J, De Carvalho BP, Iyer A, Abualnaja KO, Yaghmoor SS, ve ark. (2016). Urinary biomarkers of exposure to 57 xenobiotics and its association with oxidative stress in a population in Jeddah, Saudi Arabia. Environmental research, 150, 573–581. https://doi.org/10.1016/j.envres.2015.11.029
  • Ayala A, Muñoz MF, Argüelles S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative medicine and cellular longevity, 2014, 360438. https://doi.org/10.1155/2014/360438
  • Barja G, López-Torres M, Pérez-Campo R, Rojas C, Cadenas S, Prat J, ve ark. (1994). Dietary vitamin C decreases endogenous protein oxidative damage, malondialdehyde, and lipid peroxidation and maintains fatty acid unsaturation in the guinea pig liver. Free Radical Biology and Medicine, 17(2), 105-115.
  • Barrera G, Pizzimenti S, Daga M, Dianzani C, Arcaro A, Cetrangolo GP, ve ark. (2018). Lipid Peroxidation-Derived Aldehydes, 4-Hydroxynonenal and Malondialdehyde in Aging-Related Disorders. Antioxidants (Basel, Switzerland), 7(8), 102. https://doi.org/10.3390/antiox7080102
  • Baudin B. (2020). Stress oxydant et protections antioxydantes. Revue Francophone des Laboratoires, 2020(522), 22-30.
  • Benjamin S, Masai E, Kamimura N, Takahashi K, Anderson RC, Faisal PA (2017). Phthalates impact human health: Epidemiological evidences and plausible mechanism of action. Journal of hazardous materials, 340, 360–383. https://doi.org/10.1016/j.jhazmat.2017.06.036
  • Caldwell JC. (2012). DEHP: Genotoxicity and potential carcinogenic mechanisms—A review. Mutation research, 751(2), 82–157. https://doi.org/10.1016/j.mrrev.2012.03.001
  • Callesen M, Bekö G, Weschler CJ, Langer S, Brive L, Clausen G, ve ark. (2014). Phthalate metabolites in urine and asthma, allergic rhinoconjunctivitis and atopic dermatitis in preschool children. International journal of hygiene and environmental health, 217(6), 645–652. https://doi.org/10.1016/j.ijheh.2013.12.001
  • Campbell JL Jr, Yoon M, Ward PL, Fromme H, Kessler W, Phillips MB, ve ark., (2018). Excretion of Di-2-ethylhexyl phthalate (DEHP) metabolites in urine is related to body mass index because of higher energy intake in the overweight and obese. Environment international, 113, 91–99. https://doi.org/10.1016/j.envint.2018.01.023
  • Carr AC, Frei B. (1999). Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. The American journal of clinical nutrition, 69(6), 1086-1107.
  • Choi Y, Lee S.J, Jeon J, Jung KJ, Jee SH. (2019). Inverse associations of bisphenol A and phthalate metabolites with serum bilirubin levels in Korean population. Environmental science and pollution research international, 26(26), 26685–26695. https://doi.org/10.1007/s11356-019-05205-y
  • Cyr AR, Domann FE. (2011). The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxidants & redox signaling, 15(2), 551-589.
  • Du YY, Fang YL, Wang YX, Zeng Q, Guo N, Zhao H, ve ark. (2016). Follicular fluid and urinary concentrations of phthalate metabolites among infertile women and associations with in vitro fertilization parameters. Reproductive toxicology (Elmsford, N.Y.), 61, 142–150. https://doi.org/10.1016/j.reprotox.2016.04.005
  • Du YY, Guo N, Wang YX, Hua X, Deng TR, Teng XM, ve ark. (2018). Urinary phthalate metabolites in relation to serum anti-Müllerian hormone and inhibin B levels among women from a fertility center: a retrospective analysis. Reproductive health, 15(1), 33. https://doi.org/10.1186/s12978-018-0469-8
  • Erkekoglu P, Zeybek ND, Giray BK, Rachidi W, Kızılgün, Hininger‐Favier I v ark. (2014). The effects of di (2‐ethylhexyl) phthalate on rat liver in relation to selenium status. International journal of experimental pathology, 95(1), 64-77.
  • Erkekoglu P, Rachidi W, Yuzugullu OG, Giray B, Favier A, Ozturk M, ve ark. (2010). Evaluation of cytotoxicity and oxidative DNA damaging effects of di(2-ethylhexyl)-phthalate (DEHP) and mono(2-ethylhexyl)-phthalate (MEHP) on MA-10 Leydig cells and protection by selenium. Toxicology and applied pharmacology, 248(1), 52–62. https://doi.org/10.1016/j.taap.2010.07.016
  • Galasso M, Gambino S, Romanelli MG, Donadelli M, Scupoli MT. (2021). Browsing the oldest antioxidant enzyme: catalase and its multiple regulation in cancer. Free radical biology & medicine, 172, 264–272. https://doi.org/10.1016/j.freeradbiomed.2021.06.010
  • Gaucher C, Boudier A, Bonetti J, Clarot I, Leroy P, Parent, M. (2018). Glutathione: antioxidant properties dedicated to nanotechnologies. Antioxidants, 7(5), 62.
  • Goldstone AE, Chen Z, Perry MJ, Kannan K, Louis GM. (2015). Urinary bisphenol A and semen quality, the LIFE Study. Reproductive toxicology (Elmsford, N.Y.), 51, 7–13. https://doi.org/10.1016/j.reprotox.2014.11.003
  • Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. (2015). EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocrine reviews, 36(6), E1–E150. https://doi.org/10.1210/er.2015-1010
  • Göktekin E. (2016). Prenatal dönemde dihekzil fitalat ve disiklohekzil fitalata maruziyetin erkek ve dişi sıçanların bazı endokrin dokuları üzerindeki etkilerinin incelenmesi, Hacettepe Üniversitesi, Sağlık Bilimleri Enstitüsü, Ankara, Doktora Tezi.
  • Gu Y, Gao M, Zhang W, Yan L, Shao F, Zhou J. (2021). Exposure to phthalates DEHP and DINP May lead to oxidative damage and lipidomic disruptions in mouse kidney. Chemosphere, 271, 129740.
  • Han QQ, Shen TT, Wang F, Wu PF, Chen JG. (2018). Preventive and therapeutic potential of vitamin C in mental disorders. Current medical science, 38(1), 1-10.
  • Harrison FE, Bowman GL, Polidori MC. (2014). Ascorbic acid and the brain: rationale for the use against cognitive decline. Nutrients, 6(4), 1752-1781.
  • Heudorf U, Mersch V, Angerer J. (2007). Phthalates: toxicology and exposure. International journal of hygiene and environmental health, 210(5), 623–634. https://doi.org/10.1016/j.ijheh.2007.07.011
  • Jain SK, McVie R, Duett J, Herbst JJ. (1989). Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes, 38(12):1539–1543.
  • John PWM. (1971). Statistical Design and Analysis of Experiments. New York: Macmillan Co.
  • Johns LE, Ferguson KK, Soldin OP, Cantonwine DE, Rivera-González LO, Del Toro LV, ve ark. (2015). Urinary phthalate metabolites in relation to maternal serum thyroid and sex hormone levels during pregnancy: a longitudinal analysis. Reproductive biology and endocrinology : RB&E, 13, 4. https://doi.org/10.1186/1477-7827-13-4
  • Kaur M, Jindal R. (2017). Oxidative stress response in liver, kidney and gills of Ctenopharyngodon idellus (Cuvier & Valenciennes) exposed to chlorpyrifos. MOJ Biology and Medicine, 1(4), 103-112.
  • Kim HW, Cho SI, Bae S, Kim H, Kim Y, Hwang YI, Lee WC. (2012). Vitamin C up-regulates expression of CD80, CD86 and MHC class II on dendritic cell line, DC-1 via the activation of p38 MAPK. Immune network, 12(6), 277-283.
  • Kim NY, Kim TH, Lee E, Patra N, Lee J, Shin MO ve ark. (2010). Functional role of phospholipase D (PLD) in di (2-ethylhexyl) phthalate-induced hepatotoxicity in Sprague-Dawley rats. Journal of Toxicology and Environmental Health, Part A, 73(21-22), 1560-1569.
  • Kim JH, Park HY, Bae S, Lim YH, Hong YC. (2013). Diethylhexyl phthalates is associated with insulin resistance via oxidative stress in the elderly: a panel study. PloS one, 8(8), e71392. https://doi.org/10.1371/journal.pone.0071392
  • Kim S, Kang S, Lee G, Lee S, Jo A, Kwak K, ve ark. (2014). Urinary phthalate metabolites among elementary school children of Korea: sources, risks, and their association with oxidative stress marker. The Science of the total environment, 472, 49–55. https://doi.org/10.1016/j.scitotenv.2013.10.118
  • Krotz SP, Carson SA, Tomey C, Buster JE. (2012). Phthalates and bisphenol do not accumulate in human follicular fluid. Journal of assisted reproduction and genetics, 29(8), 773–777. https://doi.org/10.1007/s10815-012-9775-1
  • Kumar C, Igbaria A, Autreaux B, Planson AG, Junot C, Godat E, ve ark. (2011). Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol‐redox control. The EMBO journal, 30(10), 2044-2056.
  • Kuo FC, Su SW, Wu CF, Huang MC, Shiea J, Chen BH, ve ark. (2015). Relationship of urinary phthalate metabolites with serum thyroid hormones in pregnant women and their newborns: a prospective birth cohort in Taiwan. PloS one, 10(6), e0123884. https://doi.org/10.1371/journal.pone.0123884
  • Lapinskas PJ, Brown S, Leesnitzer LM, Blanchard S, Swanson C, Cattley RC ve ark. (2005). Role of PPARα in mediating the effects of phthalates and metabolites in the liver. Toxicology, 207(1), 149-163.
  • Latini G, De Felice C, Verrotti A. (2004). Plasticizers, infant nutrition and reproductive health. Reproductive toxicology (Elmsford, N.Y.), 19(1), 27–33. https://doi.org/10.1016/j.reprotox.2004.05.011
  • Li B, Xu X, Zhu Y, Cao J, Zhang Y, Huo X. (2016a). Neonatal phthalate ester exposure induced placental MTs, FATP1 and HFABP mRNA expression in two districts of southeast China. Scientific reports, 6, 21004. https://doi.org/10.1038/srep21004
  • Li L, Liu JC, Lai FN, Liu HQ, Zhang XF, Dyce PW ve ark. (2016b). Di (2-ethylhexyl) Phthalate Exposure Impairs Growth of Antral Follicle in Mice. PloS one, 11(2), e0148350. https://doi.org/10.1371/journal.pone.0148350
  • Lushchak VI. (2012). Glutathione homeostasis and functions: potential targets for medical interventions. Journal of amino acids, 2012.
  • Lymperaki E, Makedou K, Iliadis S, Vagdatli, E. (2015). Effects of acute cigarette smoking on total blood count and markers of oxidative stress in active and passive smokers. Hippokratia, 19(4), 293–297.
  • Meeker JD, Ferguson KK. (2014). Urinary phthalate metabolites are associated with decreased serum testosterone in men, women, and children from NHANES 2011-2012. The Journal of clinical endocrinology and metabolism, 99(11), 4346–4352. https://doi.org/10.1210/jc.2014-2555
  • Moretti M, Fraga DB, Rodrigues ALS. (2017). ). Preventive and therapeutic potential of ascorbic acid in neurodegenerative diseases. CNS neuroscience & therapeutics, 23(12), 921-929.
  • Nagy P. (2013). Kinetics and mechanisms of thiol–disulfide exchange covering direct substitution and thiol oxidation-mediated pathways. Antioxidants & redox signaling, 18(13), 1623-1641.
  • Ogunwole GA, Abiya SE, Amaeze NH, Eze CT. (2021). Antioxidant markers in gills, liver and muscle tissue of the African Sharptooth Catfish (Clarias gariepinus) exposed to subchronic levels of Ibuprofen and Dibutyl phthalate. Scientific African, 12, e00816.
  • Olayinka ET, Olukowade IL. (2010). Effect of amoxycillin/clavulanic acid (Augmentin 625®) on antioxidant indices and markers of renal and hepatic damage in rats. Toxicol. Environ. Health Sci, 2, 85-92.
  • Omaye ST, Turnbull JD, Sauberlich HE. (1979). Selected methods for the determination of ascorbic acid in animal cells, tissues and fluids. In: McCormick DB, Wright LD, editors. Methods in enzymology, vol. 62. New York: Academic Press, p. 3–11.
  • Padayatty SJ, Levine M. (2016). Vitamin C: the known and the unknown and Goldilocks. Oral diseases, 22(6), 463-493.
  • Park C, Choi W, Hwang M, Lee Y, Kim S, Yu S, ve ark. (2017). Associations between urinary phthalate metabolites and bisphenol A levels, and serum thyroid hormones among the Korean adult population- Korean National Environmental Health Survey (KoNEHS) 2012-2014. The Science of the total environment, 584-585, 950–957. https://doi.org/10.1016/j.scitotenv.2017.01.144
  • Perrone S, Santacroce A, Longini M, Proietti F, Bazzini F, Buonocore G. (2018). The Free Radical Diseases of Prematurity: From Cellular Mechanisms to Bedside. Oxidative medicine and cellular longevity, 2018, 7483062. https://doi.org/10.1155/2018/7483062
  • Piecha R, Svačina Š, Malý M, Vrbík K, Lacinová Z, Haluzík M ve ark. (2016). Urine Levels of Phthalate Metabolites and Bisphenol A in Relation to Main Metabolic Syndrome Components: Dyslipidemia, Hypertension and Type 2 Diabetes. A Pilot Study. Central European journal of public health, 24(4), 297–301. https://doi.org/10.21101/cejph.a4704
  • Rocha BA, Asimakopoulos AG, Barbosa F Jr, Kannan K. (2017). Urinary concentrations of 25 phthalate metabolites in Brazilian children and their association with oxidative DNA damage. The Science of the total environment, 586, 152–162. https://doi.org/10.1016/j.scitotenv.2017.01.193
  • Romano ME, Eliot MN, Zoeller RT, Hoofnagle AN, Calafat AM, Karagas MR ve ark. (2018). Maternal urinary phthalate metabolites during pregnancy and thyroid hormone concentrations in maternal and cord sera: The HOME Study. International journal of hygiene and environmental health, 221(4), 623–631. https://doi.org/10.1016/j.ijheh.2018.03.010
  • Roszkowski K, Olinski R. (2012). Urinary 8-oxoguanine as a predictor of survival in patients undergoing radiotherapy. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 21(4), 629–634. https://doi.org/10.1158/1055-9965.EPI-11-0981
  • Rusyn I, Peters JM, Cunningham ML. (2006). Modes of action and species-specific effects of di-(2-ethylhexyl) phthalate in the liver. Critical reviews in toxicology, 36(5), 459-479.
  • Sadzak A, Mravljak J, Maltar-Strmečki N, Arsov Z, Baranoviç G , Erceg I, ve ark. (2020). The Structural Integrity of the Model Lipid Membrane during Induced Lipid Peroxidation: The Role of Flavonols in the Inhibition of Lipid Peroxidation. Antioxidants (Basel, Switzerland), 9(5), 430. https://doi.org/10.3390/antiox9050430
  • Safarpour S, Zabihi E, Ghasemi-Kasman M, Nosratiyan N, Feizi F. (2021). Prenatal and breastfeeding exposure to low dose of diethylhexyl phthalate induces behavioral deficits and exacerbates oxidative stress in rat hippocampus. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 154, 112322. https://doi.org/10.1016/j.fct.2021.112322
  • Scibior-Bentkowska D, Czeczot H. (2006). Katalaza—budowa, właściwości, funkcje [Catalase: structure, properties, functions]. Postepy Hig Med Dosw (Online), 60, 170-180.
  • Seo KW, Kim KB, Kim YJ, Choi JY, Lee KT, Choi KS. (2004). Comparison of oxidative stress and changes of xenobiotic metabolizing enzymes induced by phthalates in rats. Food and chemical toxicology, 42(1), 107-114.
  • Silva MJ, Reidy JA, Samandar E, Herbert AR, Needham LL, Calafat AM. (2005). Detection of phthalate metabolites in human saliva. Archives of toxicology, 79(11), 647–652. https://doi.org/10.1007/s00204-005-0674-4
  • Sircar D, Albazi SJ, Atallah Y, Pizzi W. (2008). Validation and application of an HPLC method for determination of di(2-ethylhexyl) phthalate and mono (2-ethylhexyl) phthalate in liver samples. Journal of chromatographic science, 46(7), 627–631. https://doi.org/10.1093/chromsci/46.7.627
  • Smerieri A, Testa C, Lazzeroni P, Nuti F, Grossi E, Cesari S, ve ark. (2015). Di-(2-ethylhexyl) phthalate metabolites in urine show age-related changes and associations with adiposity and parameters of insulin sensitivity in childhood. PloS one, 10(2), e0117831. https://doi.org/10.1371/journal.pone.0117831
  • Tanaka K, Hashimoto T, Tokumaru S, Iguchi H, Kojo S. (1997). Interactions between vitamin C and vitamin E are observed in tissues of inherently scorbutic rats. The Journal of nutrition, 127(10), 2060-2064.
  • Tiftik AM. (1996). Biüret metoduyla total protein tayini, Klinik Biyokimya, Konya, Mimoza Yayınları, 291-292.
  • Wang Y, Zhu H, Kannan K. (2019). A review of biomonitoring of phthalate exposures. Toxics, 7(2):21. https://doi.org/10.3390/toxics7020021
  • Wang C, Yang L, Wang S, Zhang Z, Yu Y, Wang M ve ark. (2016a). The classic EDCs, phthalate esters and organochlorines, in relation to abnormal sperm quality: A systematic review with meta- analysis. Scientific reports, 6, 19982. https://doi.org/10.1038/srep19982
  • Wang YX, Zeng Q, Sun Y, Yang P, Wang P, Li J ve ark. (2016b). Semen phthalate metabolites, semen quality parameters and serum reproductive hormones: a cross-sectional study in China. Environmental pollution (Barking, Essex:1987), 211, 173–182. https://doi.org/10.1016/j.envpol.2015.12.052
  • Ye H, Ha M, Yang M, Yue P, Xie Z, Liu C. (2017). Di2-ethylhexyl phthalate disrupts thyroid hormone homeostasis through activating the Ras/Akt/TRHr pathway and inducing hepatic enzymes. Scientific Reports, 7(1), 1-12.
  • Yu L, Yang M, Cheng M, Fan L, Wang X, Xu T, ve ark. (2021). Associations between urinary phthalate metabolite concentrations and markers of liver injury in the US adult population. Environment international, 155,106608. https://doi.org/10.1016/j.envint.2021.106608
  • Yüzüak H, Akbulut KG, Yüzüak S. (2014). Yaşlanma sürecinde melatoninin pankreas dokusundaki oksidan ve antioksidanlara etkisi. J Clin Exp Inves; 5(4):583-588.
  • Zalewska-Ziob M, Adamek B, Kasperczyk J, Romuk E, Hudziec E, Chwalińska E, ve ark. (2019). Activity of Antioxidant Enzymes in the Tumor and Adjacent Noncancerous Tissues of Non-Small-Cell Lung Cancer. Oxidative medicine and cellular longevity, 2019, 2901840. https://doi.org/10.1155/2019/2901840
  • Zhang Y, Jiao Y, Li Z, Tao Y, Yang Y. (2021). Hazards of phthalates (PAEs) exposure: A review of aquatic animal toxicology studies. Science of the Total Environment, 771, 145418. https://doi.org/10.1016/j.scitotenv.2021.145418
  • Zhong Q, Liu HL, Fu H, Niu QS, Wu HB, Huang F. (2021). Prenatal exposure to phthalates with preterm birth and gestational age: A systematic review and meta-analysis. Chemosphere, 282, 130991. https://doi.org/10.1016/j.chemosphere.2021.130991
  • Zhou L, Beattie MC, Lin CY, Liu J, Traore K, Papadopoulos V, ve ark. (2013). Oxidative stress and phthalate-induced down-regulation of steroidogenesis in MA-10 Leydig cells. Reproductive toxicology (Elmsford, N.Y.), 42, 95–101. https://doi.org/10.1016/j.reprotox.2013.07.02
Toplam 79 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Cerrahi
Bölüm Orijinal Araştırma Makaleleri
Yazarlar

Ozan Gülboy 0000-0002-4531-7322

Emine Altın 0000-0002-3310-3044

Ali Ertekin 0000-0002-6299-9716

Yayımlanma Tarihi 30 Aralık 2022
Gönderilme Tarihi 22 Haziran 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Gülboy, O., Altın, E., & Ertekin, A. (2022). Di (2-Etilhekzil) Fitalatın Ratlarda Doku Lipid Peroksidasyonu ve Antioksidan Düzeylerine Etkisi. Van Sağlık Bilimleri Dergisi, 15(3), 301-311. https://doi.org/10.52976/vansaglik.1134285

ISSN 

images?q=tbn:ANd9GcQBnZPknmjKO2vn7ExYwjsL0g4cijty6VTFQQ&usqp=CAU CABI-Logo_Accessible_RGB.png  logo-e1506365530266.png ici2.png 

8c492a0a466f9b2cd59ec89595639a5c?AccessKeyId=245B99561176BAE11FEB&disposition=0&alloworigin=1asos-index.png  Root Indexing    ResearchBib BASE Logo      


Creative Commons Lisansı

Van Health Sciences Journal (Van Sağlık Bilimleri Dergisi) başlıklı eser bu Creative Commons Atıf-Gayri Ticari 4.0 Uluslararası Lisansı ile lisanslanmıştır.

  open-access-logo.png  search-result-logo-horizontal-TEST.jpg