Klinik Araştırma
BibTex RIS Kaynak Göster

Evaluation of Optical Coherence Tomography Biomarkers During the COVID-19 Pandemic in Patients with Diabetic Retinopathy for whom Anti-Vascular Endothelial Growth Factor Cannot Be Applied

Yıl 2023, , 207 - 213, 30.12.2023
https://doi.org/10.52976/vansaglik.1223055

Öz

Objective: Aim of this study is evaluation of the predictive effect of biomarkers evaluated by optical coherence tomography(OCT) on vision for at least 6 months in patients who received anti-VEGF therapy for diabetic retinopathy(DR) and who could not receive treatment due to the COVID-19 pandemic.
Material and methods: Age, number of previous injections, pre-injection and last visit best corrected visual acuity(BCVA), HbA1C values, OCT, CMT and OCT biomarkers were evaluated at least 6 months post-injection of patients who received minimum 3 doses of Anti-VEGF due to DR in our clinic between the 7th month of 2019 and the 1st month of 2020. The chi-square test, the paired t test, the regression analysis were used for statistical analysis.
Results: A total of 61 patients, 82 eyes were included in the study, 33 patients(53.2%) were women. Mean age was 64.2(±7.2) years, and BCVA was 0.23±0.19 and 0.25±0.23 at pre-injection and final follow-up, respectively. Initial CMT was 418.6±143.2, and at the last control it was 496.6±134.7 micrometers. The effect of OCT biomarkers on final vision was evaluated; the absence of DRIL, intact EZ-ELM and HRNS below 20 and CMT less than 350 µm after the last injection were found to be statistically significant(p<0.05).
Conclusion: In this process, patients with DR could not receive treatment even though they had an anti-VEGF indication; patients with deterioration in retinal layers, high CMT had worse vision levels. We think that the treatment-free follow-up period of patients who do not have these findings can be extended.

Proje Numarası

Yoktur

Kaynakça

  • Alkuraya H, Kangave D,Abu El-Asrar AM. (2005). The correlation between optical coherence tomographic features and severity of retinopathy, macular thickness and visual acuity in diabetic macular edema. International Ophthalmology, 26(3), 93-99.
  • Ay İE,Gürbüz M. (2021). The frequency of ocular surface inflammation findings and relationship with mortality in patients diagnosed with SARS-CoV-2 infection: A retrospective study. Turkiye Klinikleri Journal of Ophthalmology , 2021;30(4):259-65.
  • Catier A, Tadayoni R, Paques M, Erginay A, Haouchine B, Gaudric A, et al. (2005). Characterization of macular edema from various etiologies by optical coherence tomography. American Journal of Ophthalmology, 140(2), 200-206.
  • De S, Saxena S, Kaur A, Mahdi AA, Misra A, Singh M, et al. (2021). Sequential restoration of external limiting membrane and ellipsoid zone after intravitreal anti-VEGF therapy in diabetic macular oedema. Eye (London), 35(5), 1490-1495.
  • Gillies MC, Hunyor AP, Arnold JJ, Guymer RH, Wolf S, Pecheur FL, et al. (2020). Macular atrophy in neovascular age-related macular degeneration: A randomized clinical trial comparing ranibizumab and aflibercept (RIVAL Study). Ophthalmology, 127(2), 198-210.
  • Gold MS, Sehayek D, Gabrielli S, Zhang X, McCusker C, Ben-Shoshan M. (2020). COVID-19 and comorbidities: a systematic review and meta-analysis. Postgraduate Medicine, 132(8), 749-755.
  • Helmy YM,Atta Allah HR. (2013). Optical coherence tomography classification of diabetic cystoid macular edema. Clinical Ophthalmology, 7, 1731-1737.
  • Huemer J, Hienert J, Hirn C, Hackl C, Radda SM,Findl O. (2020). Remodelling intravitreal therapy pathways for macular disease during the COVID-19 pandemic and an Austrian national lockdown. BMJ Open Ophthalmology, 5(1), e000560.
  • Hussain A, Hussain N, Nutheti R. (2005). Comparison of mean macular thickness using optical coherence tomography and visual acuity in diabetic retinopathy. Clinical Experimental Ophthalmology, 33(3), 240-245.
  • Hwang TS, Jia Y, Gao SS, Bailey ST, Lauer AK, Flaxel CJ, et al. (2015). Optical coherence tomography angiography features of diabetic retinopathy. Retina, 35(11), 2371-2376.
  • Kang HM, Chung EJ, Kim YM,Koh HJ. (2013). Spectral-domain optical coherence tomography (SD-OCT) patterns and response to intravitreal bevacizumab therapy in macular edema associated with branch retinal vein occlusion. Graefes Archive Clinical Experimental Ophthalmology, 251(2), 501-508.
  • Kang JW, Chung H,Chan Kim H. (2016). Correlation of optical coherence tomographic hyperreflective foci with visual outcomes in different patterns of diabetic macular edema. Retina, 36(9), 1630-1639.
  • Kim KT, Kim DY,Chae JB. (2019). Association between hyperreflective foci on spectral-domain optical coherence tomography and early recurrence of diabetic macular edema after intravitreal dexamethasone implantation. Journal of Ophthalmology, 2019, 3459164.
  • Korobelnik JF, Loewenstein A. (2021). Communicating with patients requiring anti-VEGF intravitreal injections and their families during the COVID-19 pandemic: an update. Graefes Archive Clinical and Experimental Ophthalmology, 259(3), 795-797.
  • Leasher JL, Bourne RR, Flaxman SR, Jonas JB, Keeffe J, Naidoo K, et al. (2016). Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes Care, 39(9), 1643-1649.
  • Maheshwary AS, Oster SF, Yuson RM, Cheng L, Mojana F, Freeman WR. (2010). The association between percent disruption of the photoreceptor inner segment-outer segment junction and visual acuity in diabetic macular edema. American Journal of Ophthalmology, 150(1), 63-67.e61.
  • Mori Y, Suzuma K, Uji A, Ishihara K, Yoshitake S, Fujimoto M, et al. (2016). Restoration of foveal photoreceptors after intravitreal ranibizumab injections for diabetic macular edema. Scientific Reports, 6, 39161.
  • Nanditha A, Ma RC, Ramachandran A, Snehalatha C, Chan JC, Chia KS, et al. (2016). Diabetes in Asia and the Pacific: Implications for the global epidemic. Diabetes Care, 39(3), 472-485.
  • Naravane AV, Mundae R, Zhou Y, Santilli C, van Kuijk F, Nazari H, et al. (2021). Short term visual and structural outcomes of anti-vascular endothelial growth factor (anti-VEGF) treatment delay during the first COVID-19 wave: A pilot study. PLoS ONE, 16(2), e0247161.
  • Nishijima K, Murakami T, Hirashima T, Uji A, Akagi T, Horii T, et al. (2014). Hyperreflective foci in outer retina predictive of photoreceptor damage and poor vision after vitrectomy for diabetic macular edema. Retina, 34(4), 732-740.
  • Otani T, Kishi S,Maruyama Y. (1999). Patterns of diabetic macular edema with optical coherence tomography. American Journal of Ophthalmology, 127(6), 688-693.
  • Ozdek SC, Erdinç MA, Gürelik G, Aydin B, Bahçeci U, Hasanreisoğlu B. (2005). Optical coherence tomographic assessment of diabetic macular edema: comparison with fluorescein angiographic and clinical findings. Ophthalmologica, 219(2), 86-92.
  • Ozdemir H, Karacorlu M,Karacorlu S. (2005). Serous macular detachment in diabetic cystoid macular oedema. Acta Ophthalmology Scandinavica, 83(1), 63-66.
  • Ozturk BT, Kerimoglu H, Adam M, Gunduz K,Okudan S. (2011). Glucose regulation influences treatment outcome in ranibizumab treatment for diabetic macular edema. Journal of Diabetes Complications, 25(5), 298-302.
  • Pelosini L, Hull CC, Boyce JF, McHugh D, Stanford MR,Marshall J. (2011). Optical coherence tomography may be used to predict visual acuity in patients with macular edema. Investigative Ophthalmology Visual Science, 52(5), 2741-2748.
  • Radwan SH, Soliman AZ, Tokarev J, Zhang L, van Kuijk FJ,Koozekanani DD. (2015). Association of disorganization of retinal inner layers with vision after resolution of center-involved diabetic macular edema. JAMA Ophthalmology, 133(7), 820-825.
  • Saxena S, Ruia S, Prasad S, Jain A, Mishra N, Natu SM, et al. (2017). Increased serum levels of urea and creatinine are surrogate markers for disruption of retinal photoreceptor external limiting membrane and inner segment ellipsoid zone in type 2 diabetes mellitus. Retina, 37(2), 344-349.
  • Sharma S, Joshi SN,Karki P. (2020). HbA1c as a predictor for response of bevacizumab in diabetic macular oedema. BMJ Open Ophthalmology, 5(1), e000449.
  • Sun JK, Lin MM, Lammer J, Prager S, Sarangi R, Silva PS, et al. (2014). Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmology, 132(11), 1309-1316.
  • Uji A, Murakami T, Nishijima K, Akagi T, Horii T, Arakawa N, et al. (2012). Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema. American Journal of Ophthalmology, 153(4), 710-717, 717.e711.
  • Vujosevic S, Berton M, Bini S, Casciano M, Cavarzeran F, Midena E. (2016). Hyperreflective retinal spots and visual function after anti-vascular endothelial growth factor treatment in center-involving diabetic macular edema. Retina, 36(7), 1298-1308.
  • Vujosevic S, Bini S, Midena G, Berton M, Pilotto E,Midena E. (2013). Hyperreflective intraretinal spots in diabetics without and with nonproliferative diabetic retinopathy: an in vivo study using spectral domain OCT. Journal of Diabetes Research, 2013, 491835. Vujosevic S, Toma C, Villani E, Muraca A, Torti E, Florimbi G, et al. (2020). Diabetic macular edema with neuroretinal detachment: OCT and OCT-angiography biomarkers of treatment response to anti-VEGF and steroids. Acta Diabetologica, 57(3), 287-296.
  • Warid Al-Laftah FA, Elshafie M, Alhashimi M, Pai A,Farouq M. (2010). Pretreatment clinical variables associated with the response to intravitreal bevacizumab (Avastin) injection in patients with persistent diabetic macular edema. Saudi Journal of Ophthalmology, 24(4), 133-138.
  • Wong TY,Bandello F. (2020). Academic ophthalmology during and after the COVID-19 pandemic. Ophthalmology, 127(8), e51-e52.
  • Yalamanchili SP, Maatouk CM, Enwere DU, Conti TF, Hom GL, Briskin IN, et al. (2020). The short-term effect of a single lapse in anti-vascular endothelial growth factor treatment for diabetic macular edema within routine clinical practice. American Journal of Ophthalmology, 219, 215-221

Anti-Vasküler Endotelyal Büyüme Faktörü Uygulanamayan Diyabetik Retinopatili Hastalarda Optik Koherens Tomografi Biyobelirteçlerinin COVID-19 Pandemi Sürecinde Değerlendirilmesi

Yıl 2023, , 207 - 213, 30.12.2023
https://doi.org/10.52976/vansaglik.1223055

Öz

Amaç: Diyabetik retinopati (DR) için yükleme ve idame tedavisi alan ve COVİD-19 pandemisi nedeniyle Anti-VEGF uygulanması gerektiği halde tedavisini alamayan hastalar üzerinden optik koherens tomografinin (OKT) ile değerlendirilen biyobelirteçlerinin en az 6 aylık sürede görme üzerine prediktör etkisinin değerlendirilmesi amaçlanmıştır.
Gereç ve yöntemler: Kliniğimizde DR nedeniyle 2019’nin 7.ayı ve 2020’in 1.ayı arası en az 3 doz Anti-VEGF yapılan ancak pandemi nedeniyle sonraki aylarda tekrar tedavi edilemeyen hastaların yaşı, önceki enjeksiyon sayıları, enjeksiyon öncesi, en az 6 ay sonrası en iyi düzeletilmiş görme keskinlikleri (EİDGK), HbA1C değerleri, OKT ile SMK ve OKT biyomarkerları değerlendirildi.
Bulgular: Çalışmaya toplam 61 hastanın, 82 göz dahil edildi, 33 hasta (%53,2) kadındı. Ortalama yaş 64,2 (±7,2), enjeksiyon öncesi ve son kontrolde EİDGK sırasıyla 0,23±0,19 ve 0,25±0,23 idi. İlk SMK 418,6±,143,2, son kontrolde 496,6±134,7 mikrometreydi. SMK’nın 350 µm’den düşük olan hastalarda istatistiksel olarak daha iyi görsel sonuçlar bulundu (p<0,05). OKT biyobelirteçlerinin son görme üzerine etkisi regresyon analizi ile değerlendirildiğinde ise DRIL olmaması, EZ-ELM’nin intakt ve HRNS’nın 20 altında olması istatiksel olarak anlamlı bulundu (p<0,05).
Sonuç: DR’li hastalarda Anti-VEGF endikasyonu olduğu halde tedavi alamadıkları bu süreçte; retina tabakalarında bozulma, yüksek SMK bulunan hastaların görme seviyeleri daha kötü seviyede seyretmiştir. Bu bulguları olmayan hastaların tedavisiz takip süresinin uzatılabileceğini düşünmekteyiz.

Destekleyen Kurum

Yoktur

Proje Numarası

Yoktur

Kaynakça

  • Alkuraya H, Kangave D,Abu El-Asrar AM. (2005). The correlation between optical coherence tomographic features and severity of retinopathy, macular thickness and visual acuity in diabetic macular edema. International Ophthalmology, 26(3), 93-99.
  • Ay İE,Gürbüz M. (2021). The frequency of ocular surface inflammation findings and relationship with mortality in patients diagnosed with SARS-CoV-2 infection: A retrospective study. Turkiye Klinikleri Journal of Ophthalmology , 2021;30(4):259-65.
  • Catier A, Tadayoni R, Paques M, Erginay A, Haouchine B, Gaudric A, et al. (2005). Characterization of macular edema from various etiologies by optical coherence tomography. American Journal of Ophthalmology, 140(2), 200-206.
  • De S, Saxena S, Kaur A, Mahdi AA, Misra A, Singh M, et al. (2021). Sequential restoration of external limiting membrane and ellipsoid zone after intravitreal anti-VEGF therapy in diabetic macular oedema. Eye (London), 35(5), 1490-1495.
  • Gillies MC, Hunyor AP, Arnold JJ, Guymer RH, Wolf S, Pecheur FL, et al. (2020). Macular atrophy in neovascular age-related macular degeneration: A randomized clinical trial comparing ranibizumab and aflibercept (RIVAL Study). Ophthalmology, 127(2), 198-210.
  • Gold MS, Sehayek D, Gabrielli S, Zhang X, McCusker C, Ben-Shoshan M. (2020). COVID-19 and comorbidities: a systematic review and meta-analysis. Postgraduate Medicine, 132(8), 749-755.
  • Helmy YM,Atta Allah HR. (2013). Optical coherence tomography classification of diabetic cystoid macular edema. Clinical Ophthalmology, 7, 1731-1737.
  • Huemer J, Hienert J, Hirn C, Hackl C, Radda SM,Findl O. (2020). Remodelling intravitreal therapy pathways for macular disease during the COVID-19 pandemic and an Austrian national lockdown. BMJ Open Ophthalmology, 5(1), e000560.
  • Hussain A, Hussain N, Nutheti R. (2005). Comparison of mean macular thickness using optical coherence tomography and visual acuity in diabetic retinopathy. Clinical Experimental Ophthalmology, 33(3), 240-245.
  • Hwang TS, Jia Y, Gao SS, Bailey ST, Lauer AK, Flaxel CJ, et al. (2015). Optical coherence tomography angiography features of diabetic retinopathy. Retina, 35(11), 2371-2376.
  • Kang HM, Chung EJ, Kim YM,Koh HJ. (2013). Spectral-domain optical coherence tomography (SD-OCT) patterns and response to intravitreal bevacizumab therapy in macular edema associated with branch retinal vein occlusion. Graefes Archive Clinical Experimental Ophthalmology, 251(2), 501-508.
  • Kang JW, Chung H,Chan Kim H. (2016). Correlation of optical coherence tomographic hyperreflective foci with visual outcomes in different patterns of diabetic macular edema. Retina, 36(9), 1630-1639.
  • Kim KT, Kim DY,Chae JB. (2019). Association between hyperreflective foci on spectral-domain optical coherence tomography and early recurrence of diabetic macular edema after intravitreal dexamethasone implantation. Journal of Ophthalmology, 2019, 3459164.
  • Korobelnik JF, Loewenstein A. (2021). Communicating with patients requiring anti-VEGF intravitreal injections and their families during the COVID-19 pandemic: an update. Graefes Archive Clinical and Experimental Ophthalmology, 259(3), 795-797.
  • Leasher JL, Bourne RR, Flaxman SR, Jonas JB, Keeffe J, Naidoo K, et al. (2016). Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes Care, 39(9), 1643-1649.
  • Maheshwary AS, Oster SF, Yuson RM, Cheng L, Mojana F, Freeman WR. (2010). The association between percent disruption of the photoreceptor inner segment-outer segment junction and visual acuity in diabetic macular edema. American Journal of Ophthalmology, 150(1), 63-67.e61.
  • Mori Y, Suzuma K, Uji A, Ishihara K, Yoshitake S, Fujimoto M, et al. (2016). Restoration of foveal photoreceptors after intravitreal ranibizumab injections for diabetic macular edema. Scientific Reports, 6, 39161.
  • Nanditha A, Ma RC, Ramachandran A, Snehalatha C, Chan JC, Chia KS, et al. (2016). Diabetes in Asia and the Pacific: Implications for the global epidemic. Diabetes Care, 39(3), 472-485.
  • Naravane AV, Mundae R, Zhou Y, Santilli C, van Kuijk F, Nazari H, et al. (2021). Short term visual and structural outcomes of anti-vascular endothelial growth factor (anti-VEGF) treatment delay during the first COVID-19 wave: A pilot study. PLoS ONE, 16(2), e0247161.
  • Nishijima K, Murakami T, Hirashima T, Uji A, Akagi T, Horii T, et al. (2014). Hyperreflective foci in outer retina predictive of photoreceptor damage and poor vision after vitrectomy for diabetic macular edema. Retina, 34(4), 732-740.
  • Otani T, Kishi S,Maruyama Y. (1999). Patterns of diabetic macular edema with optical coherence tomography. American Journal of Ophthalmology, 127(6), 688-693.
  • Ozdek SC, Erdinç MA, Gürelik G, Aydin B, Bahçeci U, Hasanreisoğlu B. (2005). Optical coherence tomographic assessment of diabetic macular edema: comparison with fluorescein angiographic and clinical findings. Ophthalmologica, 219(2), 86-92.
  • Ozdemir H, Karacorlu M,Karacorlu S. (2005). Serous macular detachment in diabetic cystoid macular oedema. Acta Ophthalmology Scandinavica, 83(1), 63-66.
  • Ozturk BT, Kerimoglu H, Adam M, Gunduz K,Okudan S. (2011). Glucose regulation influences treatment outcome in ranibizumab treatment for diabetic macular edema. Journal of Diabetes Complications, 25(5), 298-302.
  • Pelosini L, Hull CC, Boyce JF, McHugh D, Stanford MR,Marshall J. (2011). Optical coherence tomography may be used to predict visual acuity in patients with macular edema. Investigative Ophthalmology Visual Science, 52(5), 2741-2748.
  • Radwan SH, Soliman AZ, Tokarev J, Zhang L, van Kuijk FJ,Koozekanani DD. (2015). Association of disorganization of retinal inner layers with vision after resolution of center-involved diabetic macular edema. JAMA Ophthalmology, 133(7), 820-825.
  • Saxena S, Ruia S, Prasad S, Jain A, Mishra N, Natu SM, et al. (2017). Increased serum levels of urea and creatinine are surrogate markers for disruption of retinal photoreceptor external limiting membrane and inner segment ellipsoid zone in type 2 diabetes mellitus. Retina, 37(2), 344-349.
  • Sharma S, Joshi SN,Karki P. (2020). HbA1c as a predictor for response of bevacizumab in diabetic macular oedema. BMJ Open Ophthalmology, 5(1), e000449.
  • Sun JK, Lin MM, Lammer J, Prager S, Sarangi R, Silva PS, et al. (2014). Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmology, 132(11), 1309-1316.
  • Uji A, Murakami T, Nishijima K, Akagi T, Horii T, Arakawa N, et al. (2012). Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema. American Journal of Ophthalmology, 153(4), 710-717, 717.e711.
  • Vujosevic S, Berton M, Bini S, Casciano M, Cavarzeran F, Midena E. (2016). Hyperreflective retinal spots and visual function after anti-vascular endothelial growth factor treatment in center-involving diabetic macular edema. Retina, 36(7), 1298-1308.
  • Vujosevic S, Bini S, Midena G, Berton M, Pilotto E,Midena E. (2013). Hyperreflective intraretinal spots in diabetics without and with nonproliferative diabetic retinopathy: an in vivo study using spectral domain OCT. Journal of Diabetes Research, 2013, 491835. Vujosevic S, Toma C, Villani E, Muraca A, Torti E, Florimbi G, et al. (2020). Diabetic macular edema with neuroretinal detachment: OCT and OCT-angiography biomarkers of treatment response to anti-VEGF and steroids. Acta Diabetologica, 57(3), 287-296.
  • Warid Al-Laftah FA, Elshafie M, Alhashimi M, Pai A,Farouq M. (2010). Pretreatment clinical variables associated with the response to intravitreal bevacizumab (Avastin) injection in patients with persistent diabetic macular edema. Saudi Journal of Ophthalmology, 24(4), 133-138.
  • Wong TY,Bandello F. (2020). Academic ophthalmology during and after the COVID-19 pandemic. Ophthalmology, 127(8), e51-e52.
  • Yalamanchili SP, Maatouk CM, Enwere DU, Conti TF, Hom GL, Briskin IN, et al. (2020). The short-term effect of a single lapse in anti-vascular endothelial growth factor treatment for diabetic macular edema within routine clinical practice. American Journal of Ophthalmology, 219, 215-221
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Orijinal Araştırma Makaleleri
Yazarlar

Mehmet Canleblebici 0000-0002-6554-8021

Hakan Yıldırım 0000-0001-6951-8260

Mehmet Balbaba 0000-0003-1337-459X

Mustafa Bülbül 0000-0002-8627-121X

Ülkü Çeliker 0000-0002-9899-0959

Proje Numarası Yoktur
Yayımlanma Tarihi 30 Aralık 2023
Gönderilme Tarihi 23 Aralık 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Canleblebici, M., Yıldırım, H., Balbaba, M., Bülbül, M., vd. (2023). Anti-Vasküler Endotelyal Büyüme Faktörü Uygulanamayan Diyabetik Retinopatili Hastalarda Optik Koherens Tomografi Biyobelirteçlerinin COVID-19 Pandemi Sürecinde Değerlendirilmesi. Van Sağlık Bilimleri Dergisi, 16(3), 207-213. https://doi.org/10.52976/vansaglik.1223055

ISSN 

images?q=tbn:ANd9GcQBnZPknmjKO2vn7ExYwjsL0g4cijty6VTFQQ&usqp=CAU CABI-Logo_Accessible_RGB.png  logo-e1506365530266.png ici2.png 

8c492a0a466f9b2cd59ec89595639a5c?AccessKeyId=245B99561176BAE11FEB&disposition=0&alloworigin=1asos-index.png  Root Indexing    ResearchBib BASE Logo      


Creative Commons Lisansı

Van Health Sciences Journal (Van Sağlık Bilimleri Dergisi) başlıklı eser bu Creative Commons Atıf-Gayri Ticari 4.0 Uluslararası Lisansı ile lisanslanmıştır.

  open-access-logo.png  search-result-logo-horizontal-TEST.jpg