Effect of acute acrylamide administration in PTZ induced convulsions in mice
Yıl 2019,
Cilt: 30 Sayı: 2, 81 - 83, 26.07.2019
Semih Yaşar
,
Gökhan Oto
,
Özlem Ergül Erkeç
,
Ersoy Öksüz
Okan Arıhan
Öz
Epilepsy is a neurological disorder which causes seizures. Epilepsy treatment is conducted with administration of antiepileptic drugs. Acrylamide is a chemical substance which is used for manufacturing, drainage treatment, cosmetics and laboratory studies. They can also be found in potato chips or French fries, infant formulas, beer, biscuits and cookies due to heating of carbohydrates at certain degrees. This study was conducted to assess effect of acute acrylamide administration on epileptic seizures in mice. 42 female Swiss-albino mice were separated into 7 groups. Acrylamide was administered via i.p. route. Groups A5 and A10 were administered with only 5 and 10mg/kg acrylamide respectively. PA5 and PA10 groups received five days of both 5 and 10mg/kg acrylamide respectively and also administered 80mg/kg(i.p.) pentylenetetrazol(PTZ) at the end of the 5th day. Control group was administered with saline. PTZ group was administered solely with 80mg/kg(i.p.) PTZ. PHE(Phenytoin) group received 15mg/kg phenylephrine+80mg/kg PTZ. Results show no convulsions or any tremor due to lone acrylamide administration in myoclonic convulsions. Results reveal a significant reduction in time required for myoclonic convulsions in PA5(15.5s) and in PA10(15.7s) groups compared to PTZ(62.3s) and PHE(23.5s) groups. Time required for tonic-clonic convulsion period was also significantly lowered in PA5(19.3s) and PA10(21s) groups compared to PTZ(267s). Present study revealed a proconvulsive effect of acrylamide on PTZ induced convulsions. Studies concerning diets of epilepsy patients are required to evaluate its relevance in human subjects.
Kaynakça
- Alturfan AA, Tozan-Beceren, Sehirli AO, et al. (2012). Resveratrol ameliorates oxidative DNA damage and protects against acrylamide-induced oxidative stress in rats. Mol Biol Rep, 39, 4589–4596.
- Arihan O, Seringec, NB, Gurel EI, et al. (2011). Effects of oral acrylamide intake on blood viscosity parameters in rats. Clin Hemorheol Micro, 47, 45-52.
- Bentzena BH, Schmitta N, Calloea K, et al. (2006). The acrylamide (S)-1 differentially affects Kv7 (KCNQ) potassium channels. Neuropharmacology, 51, 1068–1077.
- Demirok Soncu E, Kolsarici N (2017). Microwave thawing and green tea extract efficiency for the formation of acrylamide throughout the production process of chicken burgers and chicken nuggets. J Sci Food Agr, 97, 1790–1797.
- Friedman M (2003). Chemistry, biochemistry, and safety of acrylamide. A review. J Agr Food Chem, 51, 4504–4526.
- Gupta YK, Veerendra Kumar MH, Srivastava AK (2003). Effect of Centella asiatica on pentylenetetrazole-induced kindling, cognition and oxidative stress in rats. Pharmacol Biochem Behav, 74, 579–585.
- Hassanzadeha P, Arbabic E, Atyabia F, et al. (2017). Ferulic acid exhibits antiepileptogenic effect and prevents oxidative stress and cognitive impairment in the kindling model of epilepsy. Life Sci, 179, 9–14.
- Husain R, Dixit R, Das M, Seth PK. (1987). Neurotoxicity of acrylamide in developing rat brain: Changes in the levels of brain biogenic amines and activities of monoamine oxidase and acetylcholine esterase. Ind Health, 25, 19-28.
- Katare SS, Ganachari MS (2001). Effect of Centella asiatica on hypoxia induced convulsions and lithium-pilocarpine induced status epilepticus and antilipid peroxidation activity. Ind J Pharmacol, 33, 128.
- Kennedy DO, Pace S, Haskell C, Okello EJ, Milne A, Scholey AB (2006). Effects of Cholinesterase Inhibiting Sage (Salvia officinalis) on Mood, Anxiety and Performance on a Psychological Stressor Battery. Neuropsychopharmacol, 31, 845-52.
- Kuperman AS (1958). Effects of acrylamide on the central nervous system of the cat. J Pharmacol Exp Ther, 123, 180-192.
- Lee WI, Carneya PW, Hughesa AJ, Archer JS (2017). Refractory focal motor seizures controlled with intramuscular botulinum toxin. Epilepsy Res, 133, 93–97.
- LoPachin RM (2004). The Changing View of Acrylamide Neurotoxicity. Neurotoxicology, 5, 617–630.
- LoPachin RM, Ross JF, Lehnin EJ (2002). Nerve Terminals as the Primary Site of Acrylamide Action: A Hypothesis. Neurotoxicology, 23, 43-59.
- Loscher W (2011). Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure, 20, 359–368.
- Morimoto M, Satomura S, Hashimoto T, Kyotani S (2017). A study of oxidative stress and the newer antiepileptic drugs in epilepsy associated with severe motor and intellectual disabilities. J Chinese Med Assoc, 80, 19–28.
- Muralidhara SNP (2012). Evidence of acrylamide induced oxidative stress and neurotoxicity in Drosophila melanogaster – Its amelioration with spice active enrichment: Relevance to neuropathy. Neurotoxicology, 33, 1254–1264.
- Pearson JN, Patel M (2016). The role of oxidative stress in organophosphate and nerve agent toxicity. Ann Ny Acad Sci,1378, 17–24.
- Stadler RH, Blank I, Vorga N, Robert F, Hau J, Guy PA, et al. (2002). Acrylamide from reaction products. Nature, 419, 449–50.
- Sudhaa K, Ashalatha VR, Raoc A (2001). Oxidative stress and antioxidants in epilepsy. Clin Chim Acta, 303, 19–24.
- Sumner SC, Willams CC, Snyder RW, et al. (2003). Acrylamide: A Comparison of metabolism and hemoglobin adducts in rodents following dermal, intraperitoneal, oral, or inhalation exposure. Toxicol Sci, 75, 260–270.
- Waldbaum S, Patel M (2010). Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res, 88, 23-45.
- Yousef MI, El-Demerdash FM (2006). Acrylamide induced oxidative stress and biochemical perturbations in rats. Toxicology, 219, 133–41.
- Zhu YJ, Zeng T, Zhu Y-B, Yu SF, Wang QS, Zhang LP, et al. (2008). Effects of acrylamide on the nervous tissue antioxidant system and sciatic nerve electrophysiology in the rat. Neurochem Res, 33, 2310–17.
- Zödl B, Schmid D, Wassler G, Gundacker C, Leibetseder V, Thalhammer T, et al. (2007). Intestinal transport and metabolism of acrylamide. Toxicology, 232, 99–108.
Farelerde PTZ kaynaklı konvülsiyonlarda akut akrilamid uygulamasının etkisi
Yıl 2019,
Cilt: 30 Sayı: 2, 81 - 83, 26.07.2019
Semih Yaşar
,
Gökhan Oto
,
Özlem Ergül Erkeç
,
Ersoy Öksüz
Okan Arıhan
Öz
Epilepsi nöbetlere neden olan nörolojik bir hastalıktır. Epilepsi tedavisi antiepileptik ilaçlarla yapılmaktadır. Akrilamit, üretim sanayinde, atık su sistemlerinde, kozmetikte ve laboratuvar çalışmalarında kullanılan kimyasal bir maddedir. Akrilamit aynı zamanda patates cipsi ve kızartmasında, bebek ürünlerinde, birada, bisküvilerde ve kurabiyelerde karbonhidratların belli derecelerin üzerinde ısıtılmasıyla ortaya çıkabilmektedir. Bu çalışma akrilamitin farelerde epileptik nöbetlere etkisini değerlendirmek için gerçekleştirilmiştir. 42 adet dişi Swiss-albino fare 7 gruba ayrıldı. Akrilamit i.p. yolla verildi. Grup A5’e 5 ve grup A10’a 10mg/kg akrilamit 5 gün boyunca verildi. PA5 ve PA10 gruplarına hem 5 gün boyunca 5 ve 10mg/kg akrilamit hem de 5.günün sonunda 80mg/kg i.p. pentilentetrazol(PTZ) verildi. Kontrol grubuna serum fizyolojik verildi. PTZ grubuna sadece 80mg/kg i.p. PTZ verildi. PHE(Fenitoin) grubuna 15mg/kg fenilefrin+80mg/kg PTZ verildi. Sonuçlar tek başına uygulanan akrilamitin herhangi bir nöbet ya da titremeye neden olmadığını gösterdi. PA5(15.5s) ve PA10(15.7s) gruplarında PTZ(62.3s) ve PHE(23.5s) gruplarına göre miyoklonik nöbete girmek için gereken sürede anlamlı azalma gözlendi. Tonik-klonik nöbete girme süresinde de PA5(19.3s) ve PA10(21s) gruplarında PTZ(267s) grubuna göre anlamlı kısalma gerçekleşti. Mevcut sonuçlar akrilamitin PTZ ile indüklenen nöbetlerde prokonvülsif etki gösterdiğini ortaya koymaktadır. Bu sonuçların insanlardaki karşılığının değerlendirilebilmesi için epilepsi hastalarının diyetleri ile ilgili çalışmalara ihtiyaç duyulmaktadır.
Kaynakça
- Alturfan AA, Tozan-Beceren, Sehirli AO, et al. (2012). Resveratrol ameliorates oxidative DNA damage and protects against acrylamide-induced oxidative stress in rats. Mol Biol Rep, 39, 4589–4596.
- Arihan O, Seringec, NB, Gurel EI, et al. (2011). Effects of oral acrylamide intake on blood viscosity parameters in rats. Clin Hemorheol Micro, 47, 45-52.
- Bentzena BH, Schmitta N, Calloea K, et al. (2006). The acrylamide (S)-1 differentially affects Kv7 (KCNQ) potassium channels. Neuropharmacology, 51, 1068–1077.
- Demirok Soncu E, Kolsarici N (2017). Microwave thawing and green tea extract efficiency for the formation of acrylamide throughout the production process of chicken burgers and chicken nuggets. J Sci Food Agr, 97, 1790–1797.
- Friedman M (2003). Chemistry, biochemistry, and safety of acrylamide. A review. J Agr Food Chem, 51, 4504–4526.
- Gupta YK, Veerendra Kumar MH, Srivastava AK (2003). Effect of Centella asiatica on pentylenetetrazole-induced kindling, cognition and oxidative stress in rats. Pharmacol Biochem Behav, 74, 579–585.
- Hassanzadeha P, Arbabic E, Atyabia F, et al. (2017). Ferulic acid exhibits antiepileptogenic effect and prevents oxidative stress and cognitive impairment in the kindling model of epilepsy. Life Sci, 179, 9–14.
- Husain R, Dixit R, Das M, Seth PK. (1987). Neurotoxicity of acrylamide in developing rat brain: Changes in the levels of brain biogenic amines and activities of monoamine oxidase and acetylcholine esterase. Ind Health, 25, 19-28.
- Katare SS, Ganachari MS (2001). Effect of Centella asiatica on hypoxia induced convulsions and lithium-pilocarpine induced status epilepticus and antilipid peroxidation activity. Ind J Pharmacol, 33, 128.
- Kennedy DO, Pace S, Haskell C, Okello EJ, Milne A, Scholey AB (2006). Effects of Cholinesterase Inhibiting Sage (Salvia officinalis) on Mood, Anxiety and Performance on a Psychological Stressor Battery. Neuropsychopharmacol, 31, 845-52.
- Kuperman AS (1958). Effects of acrylamide on the central nervous system of the cat. J Pharmacol Exp Ther, 123, 180-192.
- Lee WI, Carneya PW, Hughesa AJ, Archer JS (2017). Refractory focal motor seizures controlled with intramuscular botulinum toxin. Epilepsy Res, 133, 93–97.
- LoPachin RM (2004). The Changing View of Acrylamide Neurotoxicity. Neurotoxicology, 5, 617–630.
- LoPachin RM, Ross JF, Lehnin EJ (2002). Nerve Terminals as the Primary Site of Acrylamide Action: A Hypothesis. Neurotoxicology, 23, 43-59.
- Loscher W (2011). Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure, 20, 359–368.
- Morimoto M, Satomura S, Hashimoto T, Kyotani S (2017). A study of oxidative stress and the newer antiepileptic drugs in epilepsy associated with severe motor and intellectual disabilities. J Chinese Med Assoc, 80, 19–28.
- Muralidhara SNP (2012). Evidence of acrylamide induced oxidative stress and neurotoxicity in Drosophila melanogaster – Its amelioration with spice active enrichment: Relevance to neuropathy. Neurotoxicology, 33, 1254–1264.
- Pearson JN, Patel M (2016). The role of oxidative stress in organophosphate and nerve agent toxicity. Ann Ny Acad Sci,1378, 17–24.
- Stadler RH, Blank I, Vorga N, Robert F, Hau J, Guy PA, et al. (2002). Acrylamide from reaction products. Nature, 419, 449–50.
- Sudhaa K, Ashalatha VR, Raoc A (2001). Oxidative stress and antioxidants in epilepsy. Clin Chim Acta, 303, 19–24.
- Sumner SC, Willams CC, Snyder RW, et al. (2003). Acrylamide: A Comparison of metabolism and hemoglobin adducts in rodents following dermal, intraperitoneal, oral, or inhalation exposure. Toxicol Sci, 75, 260–270.
- Waldbaum S, Patel M (2010). Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res, 88, 23-45.
- Yousef MI, El-Demerdash FM (2006). Acrylamide induced oxidative stress and biochemical perturbations in rats. Toxicology, 219, 133–41.
- Zhu YJ, Zeng T, Zhu Y-B, Yu SF, Wang QS, Zhang LP, et al. (2008). Effects of acrylamide on the nervous tissue antioxidant system and sciatic nerve electrophysiology in the rat. Neurochem Res, 33, 2310–17.
- Zödl B, Schmid D, Wassler G, Gundacker C, Leibetseder V, Thalhammer T, et al. (2007). Intestinal transport and metabolism of acrylamide. Toxicology, 232, 99–108.