İnsan Bağırsak Mikrobiyomunda Bakteri Kaynaklı İnsan Benzeri MikroRNA Tespiti
Yıl 2021,
Cilt: 4 Sayı: 3, 7 - 13, 30.12.2021
Aysenur Soyturk Patat
,
Özkan Ufuk Nalbantoğlu
Öz
MikroRNA’lar 19-25 nükleotid aralığında küçük RNA parçalarıdır[1]. Gen ifadelerinde düzenleyici oldukları yürütülen deneysel çalışmalarca ispatlanmıştır [2]. MikroRNA’lar RNA’nın kodlanmayan bölgelerinden oluşur ve kodlanmayan bu bölgelerin büyüklüğü, ikincil yapı oluştururken oluşabilecek çoklu ihtimaller sebebiyle tespit edilmeyi zorlaşmıştır. Bu düzenleyici dizi içeriklerinin türler arasında korunmuş olabileceğine yönelik hesaplamalı çalışmalar mevcuttur[3]. İnsan bağırsak mikrobiyomu birçok mikroorganizmaya ev sahipliği yapmakla birlikte birçok hastalıkla ilişkili olduğu bilinmektedir [4]. Bu çalışmanın amacı insan mikrobiyomunda konakçıyı hedeflediği düşünülen bakteri kaynaklı moleküler mekanizmalardan insan mikroRNA’sına benzer dizilerin varlığının geliştirilen makine öğrenmesi modeli kullanılarak aranması, bu dizilerin karaciğer sirozu hastası (n=58) ve sağlıklı kontrolde (n=53) anlamlı bir fark oluşturup oluşturmadığının incelenmesidir. Bu gruplarda geliştirilen model ile tarama yapılıp, insan mikroRNA’sına benzer yapılar gösteren taksonlar belirlenmiştir. Belirlenen taksonlar karaciğer sirozu hastaları ve sağlıklı kontroller arasında anlamlı bir fark oluşturduğu istatistik testler ile doğrulanmıştır. Geliştirilen model ile insan bağırsak mikrobiyomunun, insan mikroRNA’sına benzeyen çok sayıda dizi içeriği gözlenmiştir. Ayrıca hastalık açısından bazı türler barındırdıkları varsayılan mikroRNA dizilerinde çeşitlilik sergilediği gözlemlenmiştir. Bu yapıların varlığının belirlenmesi karaciğer sirozu hastalığında ilerleyen çalışmalara ışık tutacak niteliktedir.
Kaynakça
- [1] A. M. Mohr and J. L. Mott, ‘Overview of microRNA biology’, Semin. Liver Dis., vol. 35, no. 1, pp. 3–11, Feb. 2015, doi: 10.1055/s-0034-1397344.
- [2] J. Krol, I. Loedige, and W. Filipowicz, ‘The widespread regulation of microRNA biogenesis, function and decay’, Nat. Rev. Genet., vol. 11, no. 9, pp. 597–610, Sep. 2010, doi: 10.1038/nrg2843.
- [3] M. Yousef, W. Khalifa, İ. E. Acar, and J. Allmer, ‘MicroRNA categorization using sequence motifs and k-mers’, BMC Bioinformatics, vol. 18, no. 1, p. 170, Mar. 2017, doi: 10.1186/s12859-017-1584-1.
- [4] V. Caputi and M. C. Giron, ‘Microbiome-Gut-Brain Axis and Toll-Like Receptors in Parkinson’s Disease’, Int. J. Mol. Sci., vol. 19, no. 6, p. 1689, Jun. 2018, doi: 10.3390/ijms19061689.
- [5] R. C. Lee, R. L. Feinbaum, and V. Ambros, ‘The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.’, Cell, vol. 75, no. 5, pp. 843–854, Dec. 1993, doi: 10.1016/0092-8674(93)90529-y.
- [6] R. Akhter, ‘Circular RNA and Alzheimer’s Disease.’, Adv. Exp. Med. Biol., vol. 1087, pp. 239–243, 2018, doi: 10.1007/978-981-13-1426-1_19.
- [7] L. Cascione, ‘Integration of Omics Data to Identify Cancer-Related MicroRNA.’, Methods Mol. Biol., vol. 1970, pp. 85–99, 2019, doi: 10.1007/978-1-4939-9207-2_7.
- [8] M. M. Musri et al., ‘MicroRNA Dysregulation in Pulmonary Arteries from Chronic Obstructive Pulmonary Disease. Relationships with Vascular Remodeling.’, Am. J. Respir. Cell Mol. Biol., vol. 59, no. 4, pp. 490–499, Oct. 2018, doi: 10.1165/rcmb.2017-0040OC.
- [9] A. Wojciechowska, A. Braniewska, and K. Kozar-Kamińska, ‘MicroRNA in cardiovascular biology and disease.’, Adv. Clin. Exp. Med. Off. organ Wroclaw Med. Univ., vol. 26, no. 5, pp. 865–874, Aug. 2017, doi: 10.17219/acem/62915.
- [10] L. Zhang, Q. Lu, and C. Chang, ‘Epigenetics in Health and Disease.’, Adv. Exp. Med. Biol., vol. 1253, pp. 3–55, 2020, doi: 10.1007/978-981-15-3449-2_1.
- [11] X. Li, Y. Wei, and Z. Wang, ‘microRNA-21 and hypertension.’, Hypertens. Res., vol. 41, no. 9, pp. 649–661, Sep. 2018, doi: 10.1038/s41440-018-0071-z.
- [12] K. Fisher and J. Lin, ‘MicroRNA in inflammatory bowel disease: Translational research and clinical implication.’, World J. Gastroenterol., vol. 21, no. 43, pp. 12274–12282, Nov. 2015, doi: 10.3748/wjg.v21.i43.12274.
- [13] S. Griffiths-Jones, A. Bateman, M. Marshall, A. Khanna, and S. R. Eddy, ‘Rfam: an RNA family database.’, Nucleic Acids Res., vol. 31, no. 1, pp. 439–441, Jan. 2003, doi: 10.1093/nar/gkg006.
- [14] A. O. Chiromatzo et al., ‘miRNApath: a database of miRNAs, target genes and metabolic pathways.’, Genet. Mol. Res., vol. 6, no. 4, pp. 859–865, Oct. 2007.
- [15] E. A. Grice and J. A. Segre, ‘The human microbiome: our second genome.’, Annu. Rev. Genomics Hum. Genet., vol. 13, pp. 151–170, 2012, doi: 10.1146/annurev-genom-090711-163814.
- [16] A. L. Richards et al., ‘Gut Microbiota Has a Widespread and Modifiable Effect on Host Gene Regulation.’, mSystems, vol. 4, no. 5, Sep. 2019, doi: 10.1128/mSystems.00323-18.
- [17] L. V Hooper, T. Midtvedt, and J. I. Gordon, ‘How host-microbial interactions shape the nutrient environment of the mammalian intestine.’, Annu. Rev. Nutr., vol. 22, pp. 283–307, 2002, doi: 10.1146/annurev.nutr.22.011602.092259.
- [18] A. Shmaryahu, M. Carrasco, and P. D. T. Valenzuela, ‘Prediction of bacterial microRNAs and possible targets in human cell transcriptome.’, J. Microbiol., vol. 52, no. 6, pp. 482–489, Jun. 2014, doi: 10.1007/s12275-014-3658-3.
- [19] T. Yu et al., ‘Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy.’, Cell, vol. 170, no. 3, pp. 548-563.e16, Jul. 2017, doi: 10.1016/j.cell.2017.07.008.
- [20] G. Stegmayer et al., ‘Predicting novel microRNA: a comprehensive comparison of machine learning approaches.’, Brief. Bioinform., vol. 20, no. 5, pp. 1607–1620, Sep. 2019, doi: 10.1093/bib/bby037.
- [21] S. Griffiths-Jones, R. J. Grocock, S. van Dongen, A. Bateman, and A. J. Enright, ‘miRBase: microRNA sequences, targets and gene nomenclature’, Nucleic Acids Res., vol. 34, no. Database issue, pp. D140–D144, Jan. 2006, doi: 10.1093/nar/gkj112.
- [22] N. Qin et al., ‘Alterations of the human gut microbiome in liver cirrhosis’, Nature, vol. 513, no. 7516, pp. 59–64, Sep. 2014, doi: 10.1038/nature13568.
- [23] M. Abdallah, A. Mahgoub, H. Ahmed, and S. Chaterji, ‘Athena: Automated Tuning of k-mer based Genomic Error Correction Algorithms using Language Models’, Sci. Rep., vol. 9, no. 1, p. 16157, Nov. 2019, doi: 10.1038/s41598-019-52196-4.
- [24] T. K. Ho, ‘The random subspace method for constructing decision forests’, IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832–844, 1998, doi: 10.1109/34.709601.
- [25] D. J. Hand and K. Yu, ‘Idiot’s Bayes: Not So Stupid after All?’, Int. Stat. Rev. / Rev. Int. Stat., vol. 69, no. 3, pp. 385–398, Apr. 2001, doi: 10.2307/1403452.
- [26] T. Chen and C. Guestrin, ‘XGBoost: A Scalable Tree Boosting System’, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–794, doi: 10.1145/2939672.2939785.
- [27] N. S. Altman, ‘An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression’, Am. Stat., vol. 46, no. 3, pp. 175–185, Apr. 1992, doi: 10.2307/2685209.
- [28] D. E. Wood and S. L. Salzberg, ‘Kraken: ultrafast metagenomic sequence classification using exact alignments’, Genome Biol., vol. 15, no. 3, pp. R46–R46, Mar. 2014, doi: 10.1186/gb-2014-15-3-r46.