Araştırma Makalesi
BibTex RIS Kaynak Göster

PREDICTION OF HIGH CYCLE TIMES IN WHEEL RIM MOLDING WITH ARTIFICIAL NEURAL NETWORKS

Yıl 2022, DİJİTAL DÖNÜŞÜM VE VERİMLİLİK, 79 - 90, 12.01.2022
https://doi.org/10.51551/verimlilik.988472

Öz

Purpose: Monitoring processes through real-time data collection is useful for businesses to understand their processes better, and deal with production problems. Predicting cycle-time allows identifying production delays, downtime, and productivity loss. Thereby, taking necessary actions is facilitated to eliminate detected losses and to prevent problems towards meeting customer due dates. This study proposes a two-stage approach to determine a cycle-time threshold and predict high cycle times by examining sample molding process data obtained from a wheel-rim manufacturer.

Methodology: Our study firstly determines thresholds for high cycle times with two alternate approaches. Subsequently, data were labeled regarding the cycle-time threshold. Alternate models based on Artificial Neural Networks (ANNs) were developed in R to predict high cycle times.

Findings: Our findings include a comparison of cycle-time threshold approaches through a distance-based metric. After labeling of high cycle times, our study presents the performance of alternate predictive models. The performance of models was compared in terms of accuracy, recall and precision.

Originality: Process mining in wheel rim molding has been found meager in prior research, despite the abundance of process mining applications and cycle-time prediction models. Another distinctive aspect of the study is cycle-time threshold determination with multiple methods to eliminate manual labeling of processes.

Kaynakça

  • Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A., and Arshad, H. (2018). “State-of-the-Art in Artificial Neural Network Applications: A Survey”. Heliyon, 4(11), e00938.
  • Asiltürk, I. and Çunkaş, M. (2011). “Modeling and Prediction of Surface Roughness in Turning Operations Using Artificial Neural Network and Multiple Regression Method”, Expert Systems with Applications, 38(5), 5826-5832.
  • Backus, P., Janakiram, M., Mowzoon, S., Runger, C. and Bhargava, A. (2006). “Factory Cycle-Time Prediction with a Data-Mining Approach”, IEEE Transactions on Semiconductor Manufacturing, 19(2), 252-258.
  • Bai, Y., Sun, Z., Zeng, B., Long, J., Li, L., De Oliveira, J.V. and Li, C. (2019). “A Comparison of Dimension Reduction Techniques for Support Vector Machine Modeling of Multi-Parameter Manufacturing Quality Prediction”, Journal of Intelligent Manufacturing, 30(5), 2245-2256.
  • Chang, P.C., Fan., C.Y. and Wang, Y.W. (2009). “Evolving CBR and Data Segmentation by SOM for Flow Time Prediction in Semiconductor Manufacturing Factory”, Journal of Intelligent Manufacturing, 20(4), 421-429.
  • Chen, T. (2007). “An Intelligent Hybrid System for Wafer Lot Output Time Prediction”, Advanced Engineering Informatics, 21(1), 55-65.
  • Chen, T. (2015). “Combining Statistical Analysis and Artificial Neural Network for Classifying Jobs and Estimating the Cycle Times in Wafer Fabrication”, Neural Computing and Applications, 26(1), 223-236.
  • Chen, T., Jeang, A. and Wang, Y.C. (2008). “A Hybrid Neural Network and Selective Allowance Approach for Internal Due Date Assignment in a Wafer Fabrication Plant”, The International Journal of Advanced Manufacturing Technology, 36(5-6), 570-581.
  • Chen, T., Wu, H.C. and Wang, Y.C. (2009). “Fuzzy-Neural Approaches with Example Post-Classification for Estimating Job Cycle Time in a Wafer Fab”, Applied Soft Computing, 9(4), 1225-1231.
  • Chien, C.F., Hsiao, C.W., Meng, C., Hong, K.T. and Wang, S.T. (2005). “Cycle Time Prediction and Control Based on Production Line Status and Manufacturing Data Mining”, IEEE International Symposium on Semiconductor Manufacturing (ISSM 2005), San Jose, USA, 327-330.
  • Chien, C.F., Hsu, C.Y. and Hsiao, C.W. (2012). “Manufacturing Intelligence to Forecast and Reduce Semiconductor Cycle Time”, Journal of Intelligent Manufacturing, 23(6), 2281-2294.
  • Da Costa, D.A., Mcintosh, S., Shang, W., Kulesza, U., Coelho, R. and Hassan, A.E. (2016). “A Framework for Evaluating the Results of the SZZ Approach for Identifying Bug-Introducing Changes”, IEEE Transactions on Software Engineering, 43(7), 641-657.
  • Deuse, J., Wiegand, M. and Weisner, K. (2019). “Continuous Process Monitoring Through Ensemble-Based Anomaly Detection”, Applications in Statistical Computing, Editors: Bauer N., Ickstadt, K., Lübke, K., Szepannek, G., Trautmann, H., Vichi, M., Springer, Cham.
  • Goodwin, R., Miller, R., Tuv, E., Borisov, A., Janakiram, M. and Louchheim, S. (2004), “Advancements and Applications of Statistical Learning/Data Mining in Semiconductor Manufacturing”, Intel Technology Journal, 8(4), 325-336.
  • Géron, M. (2019). “Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow”, O’Reilly, Canada. Günther, F. and Fritsch, S. (2010). “Neuralnet: Training of Neural Networks”, The R journal, 2(1), 30-38.
  • Han, J., Kamber, M. and Pei, J. (2012). “Data Mining Concepts and Techniques”, Morgan-Knaufmann, USA.
  • Herrema, F., Curran, R., Hartjes, S., Ellejmi, M., Bancroft, S. and Schultz, M. (2019). “A Machine Learning Model to Predict Runway Exit at Vienna Airport”, Transportation Research Part E: Logistics and Transportation Review, 131, 329-342.
  • Jain, A.K., Mao, J. and Mohiuddin, K.M. (1996). “Artificial Neural Networks: A Tutorial”, Computer, 29(3), 31-44.
  • Khan, M., Afaq, S.K., Khan, N.U. and Ahmad, S. (2014). “Cycle Time Reduction in Injection Molding Process by Selection of Robust Cooling Channel Design”, International Scholarly Research Notices, 2014, 1-9.
  • Kolberg, D. and Zühlke, D. (2015). “Lean Automation Enabled by Industry 4.0 Technologies”, IFAC-PapersOnLine, 48(3), 1870-1875.
  • Kozjek, D., Kralj, D., Butala, P. and Lavrač, N. (2019). “Data Mining for Fault Diagnostics: A Case for Plastic Injection Molding”, Procedia CIRP, 81, 809-814.
  • Köksal, G., Batmaz, İ., Testik, M.C., and Güntürkün, F. (2010). “İmalat Sektöründe Kalite İyileştirmede Veri Madenciliği Tekniklerinin Kullanımı”, Verimlilik Dergisi, (2), 47-65.
  • Leys, C., Ley, C., Klein, O., Bernard, P. and Licata, L. (2013). “Detecting Outliers: Do Not Use Standard Deviation Around the Mean, Use Absolute Deviation Around the Median”, Journal of Experimental Social Psychology, 49(4), 764-766.
  • Lieber, D., Stolpe, M., Konrad, B., Deuse, J. and Morik, K. (2013). “Quality Prediction in Interlinked Manufacturing Processes Based on Supervised & Unsupervised Machine Learning”, Procedia CIRP, 7, 193-198.
  • Little, J.D.C. (1961). “A Proof of the Queueing Formula: L=λW”, Operations Research, 9, 383–387.
  • Marti-Puig, P., Blanco-M, A., Cárdenas, J.J., Cusidó, J. and Solé-Casals, J. (2018). “Effects of the Pre-Processing Algorithms in Fault Diagnosis of Wind Turbines”, Environmental modelling & software, 110, 119-128.
  • Meidan, Y., Lerner, B., Rabinowitz, G. and Hassoun, M. (2011). “Cycle-Time Key Factor Identification and Prediction in Semiconductor Manufacturing Using Machine Learning and Data Mining”, IEEE transactions on semiconductor manufacturing, 24(2), 237-248.
  • Mrugalska, B. and Ahram, T. (2017). “Managing Variations in Process Control: An Overview of Sources and Degradation Methods”, Advances in Ergonomics Modeling, Usability & Special Populations, 377-387.
  • Muhammed, T. and Shaikh, R.A. (2017). “An Analysis of Fault Detection Strategies in Wireless Sensor Networks”, Journal of Network and Computer Applications, 78, 267-287.
  • Noorzaei, J., Hakim, S.J.S., Jaafar, M.S., and Thanoon, W.A.M. (2007). “Development of Artificial Neural Networks for Predicting Concrete Compressive Strength”, International Journal of Engineering and Technology, 4(2), 141-153.
  • Polato, M., Sperduti, A., Burattin, A. and De Leoni, M. (2014). “Data-Aware Remaining Time Prediction of Business Process Instances”, 2014 International Joint Conference on Neural Networks (IJCNN 2014), Beijing, China, 816-823.
  • Quintana, G., Garcia-Romeu, M.L. and Ciurana, J. (2011). “Surface Roughness Monitoring Application Based on Artificial Neural Networks for Ball-End Milling Operations”, Journal of Intelligent Manufacturing, 22(4), 607-617.
  • Rafiq, M.Y., Bugmann, G. and Easterbrook, D.J. (2001). “Neural Network Design for Engineering Applications”, Computers & Structures, 79(17), 1541-1552.
  • Ramkumar, P.L., Ramesh, A., Alvenkar, P.P. and Patel, N. (2015). “Prediction of Heating Cycle Time in Rotational Moulding”, Materials Today: Proceedings, 2(4-5), 3212-3219.
  • Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P. and Harnisch, M. (2015). “Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries”, Boston Consulting Group, 9(1), 54-89.
  • Rust, K. (2008). “Using Little’s Law to Estimate Cycle Time and Cost”, IEEE Winter Simulation Conference (IEEE WSC 2008), Florida, USA, December 7–10: 2223-2228.
  • Shrouf, F., Ordieres, J. and Miragliotta, G. (2014). “Smart Factories in Industry 4.0: A Review of the Concept and of Energy Management Approached in Production Based on the Internet of Things Paradigm”, 21st IEEE International Conference on Industrial Engineering & Engineering Management (IEEM 2014), China, 697-701.
  • Siller, H., Rodriguez, C.A. and Ahuett, H. (2006). “Cycle Time Prediction in High-Speed Milling Operations for Sculptured Surface Finishing”, Journal of Materials Processing Technology, 174(1-3), 355–362.
  • Singh, A., Thakur, N., and Sharma, A. (2016). “A Review of Supervised Machine Learning Algorithms”, 3rd International Conference on Computing for Sustainable Global Development, March 16-18, 1310-1315.
  • Sumathi, S. and Sivanandam, S.N. (2006). “Introduction to Data Mining and Its Applications”, Springer, Berlin.
  • Van Der Aalst, W. (2011). “Process Mining: Discovery, Conformance and Enhancement of Business Processes”, Springer, Heidelberg.
  • Wang, G., Ledwoch, A., Hasani, R. M., Grosu, R. and Brintrup, A. (2019). “A Generative Neural Network Model for the Quality Prediction of Work in Progress Products”, Applied Soft Computing, 85, 105683.
  • Wang, J. and Zhang, J. (2016). “Big Data Analytics for Forecasting Cycle Time in Semiconductor Wafer Fabrication System”, International Journal of Production Research, 54(23), 7231-7244.
  • Yarlagadda, P.K. and Khong, C.A.T. (2001). “Development of a Hybrid Neural Network System for Prediction of Process Parameters in Injection Moulding”, Journal of Materials Processing Technology, 118(1-3), 109-115.
  • Yu, J.B. and Xi, L.F. (2009). “A Neural Network Ensemble-Based Model for On-Line Monitoring and Diagnosis of Out-of-Control Signals in Multivariate Manufacturing Processes”, Expert systems with Applications, 36(1), 909-921.
  • Zhang, G., Patuwo, B.E., and HU, M.Y. (1998). “Forecasting with Artificial Neural Networks: The State of the Art”, International journal of forecasting, 14(1), 35-62.
  • Zhou, H. (2013). “Computer Modeling for Injection Molding: Simulation, Optimization, and Control”, John Wiley & Sons, Singapore.

JANT DÖKÜMÜNDE YAPAY SİNİR AĞLARI İLE YÜKSEK ÇEVRİM SÜRELERİNİN TAHMİN EDİLMESİ

Yıl 2022, DİJİTAL DÖNÜŞÜM VE VERİMLİLİK, 79 - 90, 12.01.2022
https://doi.org/10.51551/verimlilik.988472

Öz

Amaç: Gerçek zamanlı veri toplama yoluyla süreçlerin izlenmesi, işletmelerin üretim süreçlerini anlamalarında ve üretimdeki sorunlarla başa çıkabilmelerinde yarar sağlamaktadır. Çevrim süresinin tahmin edilmesi, üretim gecikmelerinin, duruşların ve verimlilik düşüşlerinin belirlenmesine olanak tanımaktadır. Bu sayede, tespit edilen kayıpların giderilmesi için gerekli adımların atılması ve müşteri teslim tarihlerinin karşılanmasında yaşanan problemlerin önüne geçilmesi kolaylaşmaktadır. Bu çalışmada, bir jant üreticisinden alınan numune kalıplama proses verileri incelenerek, çevrim süresi eşik değerleri belirleyen ve bu değere dayalı yüksek çevrim sürelerini tahmin eden iki aşamalı bir yaklaşım önerilmektedir.

Yöntem: Çalışmada öncelikle iki alternatif yaklaşımla çevrim süresi için eşik değer belirlenmektedir. Ardından, eşik değer uyarınca proses verileri etiketlenmektedir. Yüksek çevrim sürelerini tahmin etmek için R'da Yapay Sinir Ağları (YSA) uygulanarak alternatif sınıflandırma modelleri geliştirilmiştir.

Bulgular: Çalışmada uzaklık bazlı bir ölçüt aracılığıyla çevrim süresi eşiği belirleme yaklaşımları karşılaştırılmaktadır. Yüksek çevrim sürelerinin etiketlenmesini takiben alternatif tahminleme modellerinin performansları sunulmaktadır. Tahminleyici modellerin performansı doğruluk, duyarlılık ve kesinlik ölçütleri ile karşılaştırılmaktadır.

Özgünlük: Literatürde proses madenciliği uygulamaları ve çevrim süresi tahmin modelleri sıklıkla çalışılmış olmasına karşın, jant dökümünde proses madenciliği ile ilgili çalışmalara sık rastlanmamaktadır. Çalışmada bir diğer özgün yön ise, gecikmelerin manuel biçimde etiketlenmesi yerine, çevrim süresi için eşik değer belirleyen çoklu yaklaşım izlenmesidir.

Kaynakça

  • Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A., and Arshad, H. (2018). “State-of-the-Art in Artificial Neural Network Applications: A Survey”. Heliyon, 4(11), e00938.
  • Asiltürk, I. and Çunkaş, M. (2011). “Modeling and Prediction of Surface Roughness in Turning Operations Using Artificial Neural Network and Multiple Regression Method”, Expert Systems with Applications, 38(5), 5826-5832.
  • Backus, P., Janakiram, M., Mowzoon, S., Runger, C. and Bhargava, A. (2006). “Factory Cycle-Time Prediction with a Data-Mining Approach”, IEEE Transactions on Semiconductor Manufacturing, 19(2), 252-258.
  • Bai, Y., Sun, Z., Zeng, B., Long, J., Li, L., De Oliveira, J.V. and Li, C. (2019). “A Comparison of Dimension Reduction Techniques for Support Vector Machine Modeling of Multi-Parameter Manufacturing Quality Prediction”, Journal of Intelligent Manufacturing, 30(5), 2245-2256.
  • Chang, P.C., Fan., C.Y. and Wang, Y.W. (2009). “Evolving CBR and Data Segmentation by SOM for Flow Time Prediction in Semiconductor Manufacturing Factory”, Journal of Intelligent Manufacturing, 20(4), 421-429.
  • Chen, T. (2007). “An Intelligent Hybrid System for Wafer Lot Output Time Prediction”, Advanced Engineering Informatics, 21(1), 55-65.
  • Chen, T. (2015). “Combining Statistical Analysis and Artificial Neural Network for Classifying Jobs and Estimating the Cycle Times in Wafer Fabrication”, Neural Computing and Applications, 26(1), 223-236.
  • Chen, T., Jeang, A. and Wang, Y.C. (2008). “A Hybrid Neural Network and Selective Allowance Approach for Internal Due Date Assignment in a Wafer Fabrication Plant”, The International Journal of Advanced Manufacturing Technology, 36(5-6), 570-581.
  • Chen, T., Wu, H.C. and Wang, Y.C. (2009). “Fuzzy-Neural Approaches with Example Post-Classification for Estimating Job Cycle Time in a Wafer Fab”, Applied Soft Computing, 9(4), 1225-1231.
  • Chien, C.F., Hsiao, C.W., Meng, C., Hong, K.T. and Wang, S.T. (2005). “Cycle Time Prediction and Control Based on Production Line Status and Manufacturing Data Mining”, IEEE International Symposium on Semiconductor Manufacturing (ISSM 2005), San Jose, USA, 327-330.
  • Chien, C.F., Hsu, C.Y. and Hsiao, C.W. (2012). “Manufacturing Intelligence to Forecast and Reduce Semiconductor Cycle Time”, Journal of Intelligent Manufacturing, 23(6), 2281-2294.
  • Da Costa, D.A., Mcintosh, S., Shang, W., Kulesza, U., Coelho, R. and Hassan, A.E. (2016). “A Framework for Evaluating the Results of the SZZ Approach for Identifying Bug-Introducing Changes”, IEEE Transactions on Software Engineering, 43(7), 641-657.
  • Deuse, J., Wiegand, M. and Weisner, K. (2019). “Continuous Process Monitoring Through Ensemble-Based Anomaly Detection”, Applications in Statistical Computing, Editors: Bauer N., Ickstadt, K., Lübke, K., Szepannek, G., Trautmann, H., Vichi, M., Springer, Cham.
  • Goodwin, R., Miller, R., Tuv, E., Borisov, A., Janakiram, M. and Louchheim, S. (2004), “Advancements and Applications of Statistical Learning/Data Mining in Semiconductor Manufacturing”, Intel Technology Journal, 8(4), 325-336.
  • Géron, M. (2019). “Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow”, O’Reilly, Canada. Günther, F. and Fritsch, S. (2010). “Neuralnet: Training of Neural Networks”, The R journal, 2(1), 30-38.
  • Han, J., Kamber, M. and Pei, J. (2012). “Data Mining Concepts and Techniques”, Morgan-Knaufmann, USA.
  • Herrema, F., Curran, R., Hartjes, S., Ellejmi, M., Bancroft, S. and Schultz, M. (2019). “A Machine Learning Model to Predict Runway Exit at Vienna Airport”, Transportation Research Part E: Logistics and Transportation Review, 131, 329-342.
  • Jain, A.K., Mao, J. and Mohiuddin, K.M. (1996). “Artificial Neural Networks: A Tutorial”, Computer, 29(3), 31-44.
  • Khan, M., Afaq, S.K., Khan, N.U. and Ahmad, S. (2014). “Cycle Time Reduction in Injection Molding Process by Selection of Robust Cooling Channel Design”, International Scholarly Research Notices, 2014, 1-9.
  • Kolberg, D. and Zühlke, D. (2015). “Lean Automation Enabled by Industry 4.0 Technologies”, IFAC-PapersOnLine, 48(3), 1870-1875.
  • Kozjek, D., Kralj, D., Butala, P. and Lavrač, N. (2019). “Data Mining for Fault Diagnostics: A Case for Plastic Injection Molding”, Procedia CIRP, 81, 809-814.
  • Köksal, G., Batmaz, İ., Testik, M.C., and Güntürkün, F. (2010). “İmalat Sektöründe Kalite İyileştirmede Veri Madenciliği Tekniklerinin Kullanımı”, Verimlilik Dergisi, (2), 47-65.
  • Leys, C., Ley, C., Klein, O., Bernard, P. and Licata, L. (2013). “Detecting Outliers: Do Not Use Standard Deviation Around the Mean, Use Absolute Deviation Around the Median”, Journal of Experimental Social Psychology, 49(4), 764-766.
  • Lieber, D., Stolpe, M., Konrad, B., Deuse, J. and Morik, K. (2013). “Quality Prediction in Interlinked Manufacturing Processes Based on Supervised & Unsupervised Machine Learning”, Procedia CIRP, 7, 193-198.
  • Little, J.D.C. (1961). “A Proof of the Queueing Formula: L=λW”, Operations Research, 9, 383–387.
  • Marti-Puig, P., Blanco-M, A., Cárdenas, J.J., Cusidó, J. and Solé-Casals, J. (2018). “Effects of the Pre-Processing Algorithms in Fault Diagnosis of Wind Turbines”, Environmental modelling & software, 110, 119-128.
  • Meidan, Y., Lerner, B., Rabinowitz, G. and Hassoun, M. (2011). “Cycle-Time Key Factor Identification and Prediction in Semiconductor Manufacturing Using Machine Learning and Data Mining”, IEEE transactions on semiconductor manufacturing, 24(2), 237-248.
  • Mrugalska, B. and Ahram, T. (2017). “Managing Variations in Process Control: An Overview of Sources and Degradation Methods”, Advances in Ergonomics Modeling, Usability & Special Populations, 377-387.
  • Muhammed, T. and Shaikh, R.A. (2017). “An Analysis of Fault Detection Strategies in Wireless Sensor Networks”, Journal of Network and Computer Applications, 78, 267-287.
  • Noorzaei, J., Hakim, S.J.S., Jaafar, M.S., and Thanoon, W.A.M. (2007). “Development of Artificial Neural Networks for Predicting Concrete Compressive Strength”, International Journal of Engineering and Technology, 4(2), 141-153.
  • Polato, M., Sperduti, A., Burattin, A. and De Leoni, M. (2014). “Data-Aware Remaining Time Prediction of Business Process Instances”, 2014 International Joint Conference on Neural Networks (IJCNN 2014), Beijing, China, 816-823.
  • Quintana, G., Garcia-Romeu, M.L. and Ciurana, J. (2011). “Surface Roughness Monitoring Application Based on Artificial Neural Networks for Ball-End Milling Operations”, Journal of Intelligent Manufacturing, 22(4), 607-617.
  • Rafiq, M.Y., Bugmann, G. and Easterbrook, D.J. (2001). “Neural Network Design for Engineering Applications”, Computers & Structures, 79(17), 1541-1552.
  • Ramkumar, P.L., Ramesh, A., Alvenkar, P.P. and Patel, N. (2015). “Prediction of Heating Cycle Time in Rotational Moulding”, Materials Today: Proceedings, 2(4-5), 3212-3219.
  • Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P. and Harnisch, M. (2015). “Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries”, Boston Consulting Group, 9(1), 54-89.
  • Rust, K. (2008). “Using Little’s Law to Estimate Cycle Time and Cost”, IEEE Winter Simulation Conference (IEEE WSC 2008), Florida, USA, December 7–10: 2223-2228.
  • Shrouf, F., Ordieres, J. and Miragliotta, G. (2014). “Smart Factories in Industry 4.0: A Review of the Concept and of Energy Management Approached in Production Based on the Internet of Things Paradigm”, 21st IEEE International Conference on Industrial Engineering & Engineering Management (IEEM 2014), China, 697-701.
  • Siller, H., Rodriguez, C.A. and Ahuett, H. (2006). “Cycle Time Prediction in High-Speed Milling Operations for Sculptured Surface Finishing”, Journal of Materials Processing Technology, 174(1-3), 355–362.
  • Singh, A., Thakur, N., and Sharma, A. (2016). “A Review of Supervised Machine Learning Algorithms”, 3rd International Conference on Computing for Sustainable Global Development, March 16-18, 1310-1315.
  • Sumathi, S. and Sivanandam, S.N. (2006). “Introduction to Data Mining and Its Applications”, Springer, Berlin.
  • Van Der Aalst, W. (2011). “Process Mining: Discovery, Conformance and Enhancement of Business Processes”, Springer, Heidelberg.
  • Wang, G., Ledwoch, A., Hasani, R. M., Grosu, R. and Brintrup, A. (2019). “A Generative Neural Network Model for the Quality Prediction of Work in Progress Products”, Applied Soft Computing, 85, 105683.
  • Wang, J. and Zhang, J. (2016). “Big Data Analytics for Forecasting Cycle Time in Semiconductor Wafer Fabrication System”, International Journal of Production Research, 54(23), 7231-7244.
  • Yarlagadda, P.K. and Khong, C.A.T. (2001). “Development of a Hybrid Neural Network System for Prediction of Process Parameters in Injection Moulding”, Journal of Materials Processing Technology, 118(1-3), 109-115.
  • Yu, J.B. and Xi, L.F. (2009). “A Neural Network Ensemble-Based Model for On-Line Monitoring and Diagnosis of Out-of-Control Signals in Multivariate Manufacturing Processes”, Expert systems with Applications, 36(1), 909-921.
  • Zhang, G., Patuwo, B.E., and HU, M.Y. (1998). “Forecasting with Artificial Neural Networks: The State of the Art”, International journal of forecasting, 14(1), 35-62.
  • Zhou, H. (2013). “Computer Modeling for Injection Molding: Simulation, Optimization, and Control”, John Wiley & Sons, Singapore.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

İnanç Kabasakal 0000-0003-0098-0144

Fatma Demircan Keskin 0000-0002-7000-4731

Yayımlanma Tarihi 12 Ocak 2022
Gönderilme Tarihi 30 Ağustos 2021
Yayımlandığı Sayı Yıl 2022 DİJİTAL DÖNÜŞÜM VE VERİMLİLİK

Kaynak Göster

APA Kabasakal, İ., & Demircan Keskin, F. (2022). PREDICTION OF HIGH CYCLE TIMES IN WHEEL RIM MOLDING WITH ARTIFICIAL NEURAL NETWORKS. Verimlilik Dergisi79-90. https://doi.org/10.51551/verimlilik.988472

                                                                                                          23139       23140           29293

22408  Verimlilik Dergisi Creative Commons Atıf-GayrıTicari 4.0 Uluslararası Lisansı (CC BY-NC 4.0) ile lisanslanmıştır.