Farklı dezenfektan solüsyonlarının bal arıları (Apis mellifera )üzerindeki etkilerinin araştırılması
Yıl 2021,
Cilt: 92 Sayı: 2, 143 - 151, 15.06.2021
Sedat Sevin
,
Ahmet Ceylan
,
Özge Özgenç
,
Gökhan Akdeniz
,
Fatih Yılmaz
,
Dilek Kabakcı
,
Ender Yarsan
Öz
Bu çalışmada arıcılıkta kullanılan biyosidal ve nano gümüş içerikli dezenfektanların arılar üzerine toksik etkilerinin araştırılması amaçlanmıştır. Kovanların dezenfeksiyonunda kullanılan biyosidal içerikli ve nano gümüş içerikli preparatlar ticari firmalardan temin edildi. In vivo denemeler için 3 grup oluşturuldu. Kontrol grubuna (Grup 1; n=10) sadece şurup (1/1 oranında sakkaroz-su) verildi. Deneme gruplarından birine biyosidal içerikli preparat (Grup 2; n=10) ve diğerine nano gümüş içerikli preparat (Grup 3; n=10) oral yolla arı başına 2 µl olacak şekilde otomatik pipet ile verildi. Uygulamadan 24 saat sonra tüm gruplarda ölen arılar sayıldı ve histomorfolojik analizler için gruplarda canlı kalan arıların mideleri alındı. Saha denemeleri Ordu Arıcılık Enstitüsü Müdürlüğü arılığında gerçekleştirildi. Herhangi bir uygulama yapılmayan kontrol grubu (Grup 1) ile birlikte biyosidal içerikli (Grup 2) ve nano gümüş içerikli (Grup 3) preparatların uygulandığı iki uygulama grubu oluşturuldu. Preparatlar gruplara püskütme şeklinde uygulandı ve arı ölümleri kaydedildi. Saha koşullarında kovanlara uygulanan iki dezenfektan, kontrol grubuna göre daha çok arı ölümlerine sebep oldu. En fazla arı ölümleri Nano gümüş içerikli dezenfektanın uygulandığı kovanlarda görüldü. Laboratuar denemelerinde nano gümüş içerikli preparatın yüksek oranda arı ölümlerine ve histomorfolojik incelemelerde mide epitelinde ciddi hasarlara neden olduğu belirlendi. Çalışma sonuçları, dezenfektan maddelerin arılar üzerine doğrudan uygulanmasının kolonide ciddi ölümlere neden olduğunu göstermiştir. Biyosidal ve kimyasal tabanlı preparatlar ile yapılacak kovan dezenfeksiyonu, arıların bulunmadığı dönemde gerçekleştirilmelidir
Kaynakça
- 1. Bilir EK, Sevin S, Tutun H, Alcigir ME (2018): Cytotoxic and antiproliferative effects of Rhododendron pontificum L. extract on rat glioma cell line (F98). Int J Pharm Sci Res, 9(5), 1000-1007.
- 2. Thakur M (2012): Bees as pollinators–Biodiversity and Conservation. IRJAS, 2(1), 1-7.
- 3. Yalçın H, Ağaçsapan B, Çabuk A (2019): Geographical Information Systems and Identfying Proper Location of Beekeeping Location. Gsı Journals Serıe C: AIST, 1(2), 1-15.
- 4. Van der Sluijs JP, Vaage NS (2016): Pollinators and global food security: the need for holistic global stewardship. Food ethics, 1(1), 75-91.
- 5. Çevrimli MB (2018): Current situation, problems and solutions for beekeeping sector in turkey. Erciyes Üniv Vet Fak Derg, 15(1), 58-67.
- 6. Çağlıyan A (2015): Apiculture activities throughout the bitlis country. J Geography, (30), 1-25.
- 7. Alparslan ÖS, Demirbaş N (2019): Avrupa birliği ve türkiye’de bal üretim ve ticareti açısından coğrafi işaret uygulamalarının değerlendirilmesi. Yyu J Agr Sci , 29(3), 526-538.
- 8. Kence A (2006): Importance of Genetic diversity and its presevation of honey bee of Turkey. U Arı D-U Bee J, 6(1), 25-32.
- 9. Tutun H, Kahraman HA, Aluc Y, Avci T (2019): Investigation of some metals in honey samples from West Mediterranean region of Turkey. Vet Res Forum, 10(3), 181-186.
- 10. Uzundumlu A, Aksoy A, Işık HB (2011): Current structure and basic problem in Beekeeping Operation; A case of Bingol. Atatürk Univ J of Agricultural Faculty, 42(1), 49-55.
- 11. Genersch E (2010): Honey bee pathology: Current threats to honey bees and beekeeping. Appl Microbiol Biotechnol, 87, 87–97.
12. Neumann P, Carreck NL (2010): Honey bee colony losses. J Apic Res, 49, 1–6.
13. Taric E, Glavinic U, Stevanovic J, Vejnovic B (2019): Occurrence of honey bee (Apis mellifera L.) pathogens in commercial and traditional hives. J Apic Res, 58(3), 433-443.
- 14. Arslanbaş E (2017): Treatment of diseases in organic beekeeping. Turkiye Klinikleri J Vet Sci Pharmacol Toxicol-Special Topics, 3(1), 38-45.
- 15. Gürler B (2003): Up-to-date guide for selection and use of disinfection Congress Book of Sterilisation and Disinfection, Simad Publisher, Samsun, 159-168.
- 16. Titera D, Michal B, Dolinek J, Haklova M (2009): Hygiene in the apiary. Contract PL, 22568, 6th.
- 17. Kemp GK, Kross, RD (2000): U.S. Patent No. 6,096,350. Washington, DC: U.S. Patent and Trademark Office.
- 18. Yarsan E (2008): Disinfection methods of animal house and indoor space Tarım Turk, 9,75-78.
- 19. Dağlıoğlu Y, Kabakcı D, Akdeniz G, Çelebi MS (2016): Determining the acute toxic effects of poly (vinylferrocenium) supported platinum nanoparticle (pt/pvf+nps) on Apis mellifera. MJST, 2(2), 1-8.
- 20. Dağlıoğlu Y, Kabakcı D, Akdeniz G (2015): Toxicity of nano and non-nano boron particles on Apis mellifera (honey bee). Res J Chem Environ Sci, 3, 6–13.
- 21. Özkan Y, Irende İ, Akdeniz G, Kabakçi D (2015): Evaluation of the comparative acute toxic effects of TiO2, Ag-TiO2 and ZnOTiO2 composite nanoparticles on honeybee (Apis mellifera). J Int Environ Appl Sci, 10, 26–36.
- 22. Güneş ME, Borum AE, Özakın C, Girişgin AO (2012): A new technic: efficacy of nano-silver coating of honey bee hives against some microorganisms. U Arı D-U Bee J, 12(1), 23-30.
- 23. EPPO (2010): PP 1/170 (4): Side-effects on honey bees. EPPO Bulletin, 40(3), 313-319.
- 24. Ceylan A, Özgenç Ö, Erhan F, Sevin S, Yarsan E (2019): Nosemosis’ in (nosematosis) bal arısı (Apis mellifera) midesine etkileri üzerine histokimyasal gözlemler. Vet Hekim Der Derg, 91(2), 98-103.
- 25. Uygur ÖŞ and Girişgin O (2008): Honey bee diseases and mites. U Arı D-U Bee J, 8(4), 130-142.
- 26. Ayan A, Tutun H, Aldemir OS (2019): Control Methods against Varroa Mites. Int J Adv Stud, 11(2), 19-23.
- 27. Tutun H, Koç N, Kart A (2018) Plant essential oils used against some bee diseases. Turkish JAF Sci Tech y, 6(1), 34-45.
- 28. Al-Waili N, Salom K, Al-Ghamdi A, Ansari MJ (2012): Antibiotic, pesticide, and microbial contaminants of honey: human health hazards. Sci World J, 2012.
- 29. Sammataro D, Untalan P, Guerrero F, Finley J (2005): The resistance of varroa mites (Acari: Varroidae) to acaricides and the presence of esterase. Int J Acarol, 31(1), 67-74.
- 30. Korkmaz SD, Kuplulu O, Cil GI, Akyuz, E (2017): Detection of sulfonamide and tetracycline antibiotic residues in Turkish pine honey. Int J Food Prop, 20, 50-55.
- 31. Andersen EM (1980): Hive protection and bee disease eradication by heat sterilization. In Proceedings of the XXVIIth International Congress of Apiculture, Athens (1979): (pp 329-334). Apimondia Publishing House.
- 32. Burnside CE (1931): Disinfection of american foulbrood combs by fumigation with formaldehyde—I. Bee World, 12(1), 3-7.
- 33. De Guzman ZM, Cervancia CR, Dimasuay KGB, Tolentino MM (2011): Radiation inactivation of Paenibacillus larvae and sterilization of American Foul Brood (AFB) infected hives using Co-60 gamma rays. Appl Radiat Isot , 69(10), 1374-1379.
- 34. Milivojević T, Glavan G, Božič J, Sepčić K (2015): Neurotoxic potential of ingested ZnO nanomaterials on bees. Chemosphere, 120,547–554.
- 35. Naggar YA, Dabour K, Masry S, Sadek A (2018): Sublethal effects of chronic exposure to CdO or PbO nanoparticles or their binary mixture on the honey bee (Apis millefera L.). Environ Sci Pollut Res, 1-12.
- 36. Dabour K, Al Naggar, Y, Masry S, Naiem E (2019): Cellular alterations in midgut cells of honey bee workers (Apis millefera L.) exposed to sublethal concentrations of CdO or PbO nanoparticles or their binary mixture. Sci Total Environ, 651,1356–1367.
- 37. Chaimanee V, Thongtue U, Sornmai N, Songsri S (2017): Antimicrobial activity of plant extracts against the honeybee pathogens, Paenibacillus larvae and Ascosphaera apis and their topical toxicity to Apis mellifera adults. J Appl Microbiol , 123(5), 1160-1167.
- 38. Isidorov VA, Buczek K, Segiet A, Zambrowski G (2018): Activity of selected plant extracts against honey bee pathogen Paenibacillus larvae. Apidologie, 49(6), 687-704.
- 39. Damiani N, Fernández NJ, Porrini MP, Gende LB (2014): Laurel leaf extracts for honeybee pest and disease management: antimicrobial, microsporicidal, and acaricidal activity. Parasitol Res, 113(2), 701-709.
- 40. Ahluwalia V, Kumar J, Sisodia R, Shakil NA (2014): Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind Crops Prod, 55, 202-206.
- 41. Guilger-Casagrande M, de Lima R (2019): Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotech, 7.
- 42. Fayaz AM, Ao Z, Girilal M, Chen L, Xiao X (2012): Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV-and HSV-transmitted infection. Int J Nanomedicine, 7, 5007.
- 43. Villeret B, Dieu A, Straube M, Solhonne B (2018): Silver nanoparticles impair retinoic acid-inducible gene I-mediated mitochondrial antiviral immunity by blocking the autophagic flux in lung epithelial cells. ACS nano, 12(2), 1188-1202.
- 44. Khan SU, Anjum SI, Ansari MJ, Khan MHU (2018): Antimicrobial potentials of medicinal plant’s extract and their derived silver nanoparticles: A focus on honey bee pathogen. Saudi J Biol Sci, 26(7), 1815-1834.
- 45. Sadeghi B, Gholamhoseinpoor F (2015): A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta A, 134, 310-315.
- 46. Baker C, Pradhan A, Pakstis L, Pochan DJ (2005). Synthesis and antibacterial properties of silver nanoparticles. J Nanoscı Nanotechno, 5(2), 244-249.
Investigation of the effects of different disinfectant solutions on honey bees (Apis mellifera )
Yıl 2021,
Cilt: 92 Sayı: 2, 143 - 151, 15.06.2021
Sedat Sevin
,
Ahmet Ceylan
,
Özge Özgenç
,
Gökhan Akdeniz
,
Fatih Yılmaz
,
Dilek Kabakcı
,
Ender Yarsan
Öz
In this study, it was aimed to investigate the toxic effects of biocidal and nano silver-containing disinfectants, which were used in beekeeping, on bees. Biocidal and nano-silver-containing preparations used in disinfection of hives were obtained from commercial companies. Syrup (1/1 sucrose-water) was given to the control group (Group 1; n = 10). Biocidal preparation (Group 2; n = 10) and nano-silver containing preparation (Group 3; n = 10) were given to one of the experimental groups via an automatic pipette, orally 2 µl per bee. 24 hours after the application, the bees that died in all groups were counted and the midgut tissues of the bees that survived in the groups were taken for histomorphological analysis. No application was performed in the control group (Group 1). Different disinfection solution was used in the group 2 (biocidal ingredient) and Group 3 (nano silver contents). The preparations were applied to the groups by spraying and bee deaths were recorded. Two disinfectants applied to the hives under field conditions, were found to cause more bee deaths than the control group. The highest bee death was in the nano silver group. In laboratory trials, the nano-silver-containing preparation was observed to cause high number of bee deaths and serious damage to the midgut epithelium in histomorphological examinations. The results of the study showed that direct application of disinfectant substances on bees caused serious deaths in the colony. Biocidal and chemical based preparations and hive disinfection should be applied in the empty beehives.
Kaynakça
- 1. Bilir EK, Sevin S, Tutun H, Alcigir ME (2018): Cytotoxic and antiproliferative effects of Rhododendron pontificum L. extract on rat glioma cell line (F98). Int J Pharm Sci Res, 9(5), 1000-1007.
- 2. Thakur M (2012): Bees as pollinators–Biodiversity and Conservation. IRJAS, 2(1), 1-7.
- 3. Yalçın H, Ağaçsapan B, Çabuk A (2019): Geographical Information Systems and Identfying Proper Location of Beekeeping Location. Gsı Journals Serıe C: AIST, 1(2), 1-15.
- 4. Van der Sluijs JP, Vaage NS (2016): Pollinators and global food security: the need for holistic global stewardship. Food ethics, 1(1), 75-91.
- 5. Çevrimli MB (2018): Current situation, problems and solutions for beekeeping sector in turkey. Erciyes Üniv Vet Fak Derg, 15(1), 58-67.
- 6. Çağlıyan A (2015): Apiculture activities throughout the bitlis country. J Geography, (30), 1-25.
- 7. Alparslan ÖS, Demirbaş N (2019): Avrupa birliği ve türkiye’de bal üretim ve ticareti açısından coğrafi işaret uygulamalarının değerlendirilmesi. Yyu J Agr Sci , 29(3), 526-538.
- 8. Kence A (2006): Importance of Genetic diversity and its presevation of honey bee of Turkey. U Arı D-U Bee J, 6(1), 25-32.
- 9. Tutun H, Kahraman HA, Aluc Y, Avci T (2019): Investigation of some metals in honey samples from West Mediterranean region of Turkey. Vet Res Forum, 10(3), 181-186.
- 10. Uzundumlu A, Aksoy A, Işık HB (2011): Current structure and basic problem in Beekeeping Operation; A case of Bingol. Atatürk Univ J of Agricultural Faculty, 42(1), 49-55.
- 11. Genersch E (2010): Honey bee pathology: Current threats to honey bees and beekeeping. Appl Microbiol Biotechnol, 87, 87–97.
12. Neumann P, Carreck NL (2010): Honey bee colony losses. J Apic Res, 49, 1–6.
13. Taric E, Glavinic U, Stevanovic J, Vejnovic B (2019): Occurrence of honey bee (Apis mellifera L.) pathogens in commercial and traditional hives. J Apic Res, 58(3), 433-443.
- 14. Arslanbaş E (2017): Treatment of diseases in organic beekeeping. Turkiye Klinikleri J Vet Sci Pharmacol Toxicol-Special Topics, 3(1), 38-45.
- 15. Gürler B (2003): Up-to-date guide for selection and use of disinfection Congress Book of Sterilisation and Disinfection, Simad Publisher, Samsun, 159-168.
- 16. Titera D, Michal B, Dolinek J, Haklova M (2009): Hygiene in the apiary. Contract PL, 22568, 6th.
- 17. Kemp GK, Kross, RD (2000): U.S. Patent No. 6,096,350. Washington, DC: U.S. Patent and Trademark Office.
- 18. Yarsan E (2008): Disinfection methods of animal house and indoor space Tarım Turk, 9,75-78.
- 19. Dağlıoğlu Y, Kabakcı D, Akdeniz G, Çelebi MS (2016): Determining the acute toxic effects of poly (vinylferrocenium) supported platinum nanoparticle (pt/pvf+nps) on Apis mellifera. MJST, 2(2), 1-8.
- 20. Dağlıoğlu Y, Kabakcı D, Akdeniz G (2015): Toxicity of nano and non-nano boron particles on Apis mellifera (honey bee). Res J Chem Environ Sci, 3, 6–13.
- 21. Özkan Y, Irende İ, Akdeniz G, Kabakçi D (2015): Evaluation of the comparative acute toxic effects of TiO2, Ag-TiO2 and ZnOTiO2 composite nanoparticles on honeybee (Apis mellifera). J Int Environ Appl Sci, 10, 26–36.
- 22. Güneş ME, Borum AE, Özakın C, Girişgin AO (2012): A new technic: efficacy of nano-silver coating of honey bee hives against some microorganisms. U Arı D-U Bee J, 12(1), 23-30.
- 23. EPPO (2010): PP 1/170 (4): Side-effects on honey bees. EPPO Bulletin, 40(3), 313-319.
- 24. Ceylan A, Özgenç Ö, Erhan F, Sevin S, Yarsan E (2019): Nosemosis’ in (nosematosis) bal arısı (Apis mellifera) midesine etkileri üzerine histokimyasal gözlemler. Vet Hekim Der Derg, 91(2), 98-103.
- 25. Uygur ÖŞ and Girişgin O (2008): Honey bee diseases and mites. U Arı D-U Bee J, 8(4), 130-142.
- 26. Ayan A, Tutun H, Aldemir OS (2019): Control Methods against Varroa Mites. Int J Adv Stud, 11(2), 19-23.
- 27. Tutun H, Koç N, Kart A (2018) Plant essential oils used against some bee diseases. Turkish JAF Sci Tech y, 6(1), 34-45.
- 28. Al-Waili N, Salom K, Al-Ghamdi A, Ansari MJ (2012): Antibiotic, pesticide, and microbial contaminants of honey: human health hazards. Sci World J, 2012.
- 29. Sammataro D, Untalan P, Guerrero F, Finley J (2005): The resistance of varroa mites (Acari: Varroidae) to acaricides and the presence of esterase. Int J Acarol, 31(1), 67-74.
- 30. Korkmaz SD, Kuplulu O, Cil GI, Akyuz, E (2017): Detection of sulfonamide and tetracycline antibiotic residues in Turkish pine honey. Int J Food Prop, 20, 50-55.
- 31. Andersen EM (1980): Hive protection and bee disease eradication by heat sterilization. In Proceedings of the XXVIIth International Congress of Apiculture, Athens (1979): (pp 329-334). Apimondia Publishing House.
- 32. Burnside CE (1931): Disinfection of american foulbrood combs by fumigation with formaldehyde—I. Bee World, 12(1), 3-7.
- 33. De Guzman ZM, Cervancia CR, Dimasuay KGB, Tolentino MM (2011): Radiation inactivation of Paenibacillus larvae and sterilization of American Foul Brood (AFB) infected hives using Co-60 gamma rays. Appl Radiat Isot , 69(10), 1374-1379.
- 34. Milivojević T, Glavan G, Božič J, Sepčić K (2015): Neurotoxic potential of ingested ZnO nanomaterials on bees. Chemosphere, 120,547–554.
- 35. Naggar YA, Dabour K, Masry S, Sadek A (2018): Sublethal effects of chronic exposure to CdO or PbO nanoparticles or their binary mixture on the honey bee (Apis millefera L.). Environ Sci Pollut Res, 1-12.
- 36. Dabour K, Al Naggar, Y, Masry S, Naiem E (2019): Cellular alterations in midgut cells of honey bee workers (Apis millefera L.) exposed to sublethal concentrations of CdO or PbO nanoparticles or their binary mixture. Sci Total Environ, 651,1356–1367.
- 37. Chaimanee V, Thongtue U, Sornmai N, Songsri S (2017): Antimicrobial activity of plant extracts against the honeybee pathogens, Paenibacillus larvae and Ascosphaera apis and their topical toxicity to Apis mellifera adults. J Appl Microbiol , 123(5), 1160-1167.
- 38. Isidorov VA, Buczek K, Segiet A, Zambrowski G (2018): Activity of selected plant extracts against honey bee pathogen Paenibacillus larvae. Apidologie, 49(6), 687-704.
- 39. Damiani N, Fernández NJ, Porrini MP, Gende LB (2014): Laurel leaf extracts for honeybee pest and disease management: antimicrobial, microsporicidal, and acaricidal activity. Parasitol Res, 113(2), 701-709.
- 40. Ahluwalia V, Kumar J, Sisodia R, Shakil NA (2014): Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind Crops Prod, 55, 202-206.
- 41. Guilger-Casagrande M, de Lima R (2019): Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotech, 7.
- 42. Fayaz AM, Ao Z, Girilal M, Chen L, Xiao X (2012): Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV-and HSV-transmitted infection. Int J Nanomedicine, 7, 5007.
- 43. Villeret B, Dieu A, Straube M, Solhonne B (2018): Silver nanoparticles impair retinoic acid-inducible gene I-mediated mitochondrial antiviral immunity by blocking the autophagic flux in lung epithelial cells. ACS nano, 12(2), 1188-1202.
- 44. Khan SU, Anjum SI, Ansari MJ, Khan MHU (2018): Antimicrobial potentials of medicinal plant’s extract and their derived silver nanoparticles: A focus on honey bee pathogen. Saudi J Biol Sci, 26(7), 1815-1834.
- 45. Sadeghi B, Gholamhoseinpoor F (2015): A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta A, 134, 310-315.
- 46. Baker C, Pradhan A, Pakstis L, Pochan DJ (2005). Synthesis and antibacterial properties of silver nanoparticles. J Nanoscı Nanotechno, 5(2), 244-249.