Araştırma Makalesi
BibTex RIS Kaynak Göster

Güneydoğu Anadolu Bölgesi Mardin Grubu dolomitlerinin dolomitleşme yaşlarının ve derinliklerinin kümelenmiş izotoplar ve 1B basen modeli kullanılarak belirlenmesi

Yıl 2022, , 212 - 238, 23.12.2022
https://doi.org/10.17824/yerbilimleri.1095003

Öz

Güneydoğu Anadolu Bölgesi’nde geniş bir yayılım sergileyen Kretase yaşlı sığ denizel Mardin Grubu karbonatları hidrokarbon açısından en üretken birimdir. Mardin Grubu dolomitlerinin kümelenmiş izotop sıcaklıkları 92oC ile 125oC arasında ölçülmüştür. Bir boyutlu (1B) basen modeli kullanılarak, kümelenmiş izotop sıcaklıkları dolomitleşme derinlik ve zaman bilgisine dönüştürülmüş ve dolomitleşmenin 2200 m derinlikten (22 milyon yıl önceden) 3420 m derinliğe (14 milyon önceye kadar) kadar gerçekleştiği anlaşılmıştır. Paleo-sıcaklık ve derinlik değerlerinin değişimi yeniden kristallenmenin farklı derecelerde meydana geldiğini yansıtmaktadır. Dolomitleşme sularının oksijen izotop değerleri 3.32‰ ve 6.31‰ arasında değişmektedir. Bu değerler Kretase deniz sularından oldukça ağırdırlar. Sonuçlar gösteriyor ki, çalışma alanında geç dolomitleşme olayı gözlemlenmekte ve yüksek sıcaklıktaki derince gömülmüş ve dolomitleşme ile oluşmuş gözenek suları Mardin Grubu rezervuarının porozite sistemini olumsuz yönde etkilemektedir.

Teşekkür

Yazarlar TPAO Arama Dairesi’ne bu makalenin yayınlanmasına izin verdiği ve Ar-Ge Merkezi Daire Başkanlığı’na kuyu örneklerinin kullanılmasına olanak sağladıkları için teşekkür etmektedir. Birinci yazar makaledeki jeokimyasal analizleri gerçekleştirdiği University of Miami’deki Kararlı İzotop Laboratuvarı (SIL) müdürü Peter K. Swart ve ekibine katkılarından dolayı müteşekkirdir. Bu analizlerin gerçekleştirildiği dönemde birinci yazarın ABD’deki yaşamsal giderleri 2214A kapsamında TÜBİTAK tarafından finanse edilmiştir. Son olarak, yazarlar makalenin son haline gelmesi için yapıcı eleştirlerlerde bulunan dergi hakemlerine ve editörlerine teşekkür etmektedir.

Kaynakça

  • Ala, M.A. and Moss, 1979. Comparative petroleum geology of SE Turkey and NE Syria. Journ. Petrol. Best, J.A., Barazangi, M., Al-Saad, D., Sawaf, T. And Gebran, A., 1993. Continental margin Geol. 1, 3-27.
  • Ahmed, Sirwan. (2021). Stratigraphy, Geometry, and pattern of Imbricated zones, NW Zagros Fold and Thrust Belt in Iraqi Kurdistan Region. Journal of Zankoy Sulaimani - Part A. 23. 73. 10.17656/jzs.10843.
  • Akram, Revan & Faqi, Ayad & Jihad, Wrya & Sherwani, Govand & Al-Ansari, Nadhir. (2021). Source Rock Evaluation and 1-D Basin Modelling Approach for the Sargelu Formation, Atrush-2 Well, Kurdistan Region-Iraq. Open Journal of Geology. 11. 49-60. 10.4236/ojg.2021.113004.
  • Aqrawi, A.A.M., Goff, J.C., Horbury, A.D., Sadooni F.N. "The Petroleum Geology of Iraq". Scientific Press, Beaconsfield, UK, pp. 424. (2010).
  • Aqrawi, Adnan & Badics, Balazs (2015). Geochemical characterisation, volumetric assessment and shale-oil/gas potential of the Middle Jurassic–Lower Cretaceous source rocks of NE Arabian Plate. Geoarabia -Manama-. 20. 99-140. 10.2113/geoarabia200399.
  • Barata, J. , Vahrenkamp, V. , Van Laer, P. J., Swart, P.. , and S.. Murray. "A Regional Analysis of Clumped Isotope Geochemistry to Define the Timing of Creation of Micro-Porosity in a Lower Cretaceous Giant Reservoir." Paper presented at the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, November 2015. doi: https://doi.org/10.2118/177922-MS
  • Becker, S., Reuning, L., Amthor, J.E., & Kukla, P.A. (2019). Diagenetic Processes and Reservoir Heterogeneity in Salt-Encased Microbial Carbonate Reservoirs (Late Neoproterozoic, Oman). Geofluids.
  • Bonifacie, M., Calmels, D., Eiler, J. M., Horita, J., Chaduteau, C., Vasconcelos, C., Bourrand, J. J. (2017). Calibration of the dolomite clumped isotope thermometer from 25 to 350 °C, and implications for a universal calibration for all (Ca, Mg, Fe) CO3 carbonates. Geochimica et Cosmochimica Acta, 200, 255–279. Retrieved from http://dx.doi.org/10.1016/j.gca.2016.11.028
  • Budd, D.A., 1997, Cenozoic dolomites of carbonate islands: their attributes and origin: EarthScience Reviews, v. 42, p. 1–47.
  • Chaojin, Lu & Murray, Sean & Koeshidayatullah, Ardiansyah & Swart, Peter. (2022). Clumped Isotope Acid Fractionation Factors for Dolomite and Calcite Revisited: Should We Care?. Chemical Geology. 588. 120637. 10.1016/j.chemgeo.2021.120637.
  • Cordey, W.G., 1971. Stratigraphy and sedimentation of the Cretaceous Mardin Formation in SE Turkey. In: A.S. Campbell (Ed.). Geology and History of Turkey. 13th Annual Field Conf. of the Petrol. Expl. SOC. Libya. 317-348.
  • Çelikdemir EM, Dülger S, Görür N, Wagner C., Uygur K (1991). Stratigraphy, sedimentology, and hydrocarbon potential of the Mardin Group, SE Turkey. Special Publications of the European Association of Petroleum Geoscientists 1: 439–454.
  • Defliese, W.F., Hren, M.T. and Lohmann, K.C. (2015) Compositional and temperature effects of phosphoric acid fractionation on D47 analysis and implications for discrepant calibrations. Chem. Geol., 396, 51–60. Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., & Eiler, J. M. (2011). Defining an absolute reference frame for ‘clumped’ isotope studies of CO2. Geochimica et Cosmochimica Acta, 75 (22), 7117–7131. Retrieved from http://dx.doi.org/10.1016/j.gca.2011.09.025 doi: 10.1016/ 381 j.gca.2011.09.025
  • Dercourt, J., Ricou, L.E., and Vrielynck. B., 1993, Atlas Tethys of Palaeoenvironmental Maps: Commission for the Geologic Map of the World. Paris. 14 maps and explanatory notes.
  • Edilbi, A. N. F., Kolo, K., N. R. Muhammed et al., Source rock evaluation of shale intervals of the Kurra Chine Formation, Kurdistan Region-Iraq: An organic geochemical and basin modeling approach, Egyptian Journal of Petroleum, https://doi.org/10.1016/j.ejpe.2019.06.003
  • Eiler, J. M., 2007. “Clumped-isotope” geochemistry—The study of naturally-occurring, multiply substituted isotopologues. Earth and Planetary Science Letters, 262(3-4), 309-327.
  • Eiler JM. 2011. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quat. Sci. Rev. 30:3575–88
  • Emrich, K., Ehhalt, D.H. and Vogel, J.C. (1970) Carbon isotope fractionation during the precipitation of calcium carbonate. Earth Planet. Sci. Lett., 8, 363–371.
  • Epstein, S., Buchsbaum, R., Lowenstam, H. and Urey, H.C. (1951) Carbonate water isotopic temperature scale. Geol. Soc. Am. Bull., 62, 417–426.
  • Ferry, J.M., Passey, B.H., Vasconcelos, C. and Eiler, J.M. (2011) Formation of dolomite at 40-80°C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry. Geology, 39, 571–574.
  • Fritz, P. and Smith, D.G.W. (1970) The isotopic composition of secondary dolomites. Geochim. Cosmochim. Acta, 34, 1161–1173. Ghosh, P., Adkins, J., Affek, H., Balta, Guo and W., Schauble, E.A., Schrag, D. and Eiler, J.M., (2006) C-13-O-18 bonds in carbonate minerals: A new kind of paleothermometer. Geochim. Cosmochim. Acta, 70, 1439–1456.
  • Gregg, Jay & Sibley, D., (1984). Epigenetic Dolomitization and the Origin of Xenotopic Dolomite Texture. Journal of sedimentary petrology. 54. 908-931. 10.1306/212F8535-2B24-11D7-8648000102C1865D.
  • Hakimi, Mohammed & Al-Matary, Adel & Salad Hersi, Osman. (2018). Burial and thermal history reconstruction of the Mukalla-Sayhut Basin in the Gulf of Aden, Yemen: Implications for hydrocarbon generation from Paleocene potential source rock. Journal of African Earth Sciences. 144. 10.1016/j.jafrearsci.2018.04.005.
  • Henkes, G.A., Passey, B.H., Grossman, E.L., Shenton, B. J., Perez-Huerta, A. & Yancey, T.E. 2014. Temperature limits for preservation of primary calcite clumped isotope paleotemperatures. Geochimica et Cosmochimica Acta, 139, 362–382.
  • Horita, J. (2014) Oxygen and carbon isotope fractionation in the system dolomite–water–CO2 to elevated temperatures. Geochim. Cosmochim. Acta, 129, 111–124.
  • Huntington, K.W., Eiler, J.M., Affek, H.P., Guo, W., Bonifacie, M., Yeung, L.Y., Thiagarajan, N., Passey, B., Tripati, A., Daeron, M. and Came, R. (2009) Methods and limitations of ‘clumped’ CO2 isotope (D (47)) analysis by gas-source isotope ratio mass spectrometry. J. Mass Spectrom., 44, 1318–1329.
  • John, C.M. 2015. Burial Estimates Constrained By Clumped İsotope Thermometry: Example Of The Lower Cretaceous Qishn Formation (Haushi-Huqf High, Oman). In: Armitage, P.J., Butcher, A.R. Et Al. (eds) Reservoir Quality of Clastic and Carbonate Rocks: Analysis, Modelling and Prediction. Geological Society, London, Special Publications, 435. First published online November 18, 2015, https://doi.org/10.1144/SP435.5
  • Kupecz, J. A., & Land, L. S. (1991). Late‐stage dolomitization of the lower Ordovician Ellenburger Group, west Texas. Journal of Sedimentary Research, 61, 551–571.
  • Land, L.S. and Hoops, G.K. (1973) Sodium in carbonate sediments and rocks: a possible index to the salinity of diagenetic solutions. J. Sed. Petrol.. 43. 614–617.
  • Land, L.S. (1980a) Dolomite. In: Stable Isotopes in Sedimentary Geology (Eds M. Arthur, T. Anderson, I. Kaplan, J. Veizer and L. Land), pp. 4-3–4-22. SEPM, Tulsa, OK.
  • Land, L.S. (1980b) The isotopic and trace element geochemistry of dolomite: the state of the art. In: Concepts and Models of Dolomitization, Special Publication (Eds D.H.
  • Lewis, B., 1975, Nucleation and growth theory, in Pamplin, B. R., ed., Crystal Growth, New York, Pergamon Press, p. 12-39.
  • Lloyd, M.K., Ryb, U. and Eiler, J.M. (2018) Experimental calibration of clumped isotope reordering in dolomite. Geochim. Cosmochim. Acta, 242, 1–20.Lohmann, K.C., 1988, Geochemical Patterns of Meteoric Diagenetic Systems and Their Application to Studies of Paleokarst, in James, N.P., and Choquette, P.W., eds., Paleokarst: New York, Springer-Verlag, p. 58–80.
  • Lohmann, K.C. 1988. Geochemical pattern of meteoric diagenetic systems and their application to the studies of paleokarst. In N.P. James and P.W. Choquette (Eds.), Paleokarst. New York, Springer Verlag, p. 58-80.
  • MacDonald, J., John, C. & Girard, J.-P. 2015. Dolomitization processes in hydrocarbon reservoirs: insight from geothermometry using clumped isotopes. Procedia Earth and Planetary Science, 13, 265–268.
  • MacDonald. J. M. John. C. M. and Girard. J.-P. (2018) Testing clumped isotopes as a reservoir characterization tool: a comparison with fluid inclusions in a dolomitized sedimentary carbonate reservoir buried to 2-4 km. In: Lawson. M.. Formolo. M.J. and Eiler. J.M. (eds.) From Source to Seep: Geochemical Applications in Hydrocarbon Systems. Series: Geological Society. London. Special Publications (468). Geological Society of London. pp. 189-202. (doi:10.1144/SP468.7)
  • Machel, H.G., 1997. Recrystallization versus neomorphism, and the concept of dsignificant recrystallizationT in dolomite research. Sediment. Geol. 113, 161 – 168.
  • Machel, H.G., and Mountjoy, E.W., 1986, Chemistry and environments of dolomitization—a reappraisal: Earth-Science Reviews, v. 23, p. 175–122.
  • Mahmood, Taher & Abdullah, Enaam. (2019). Reconstruction of Paleo depth and Paleo temperature from C- O stable isotope records of Mishrif Formation, southern Iraq. 1730-1742. 10.24996/ijs.2019.60.8.10.
  • Mangenot, X., Gasparrini, M., Gerdes, A., Bonifacie, M., & Rouchon, V. (2018). An emerging thermochronometer for carbonate-bearing rocks: ∆47 /(U-Pb). Geology, 46 (12), 1067–1070. doi: 10.1130/G45196.1
  • Matthews, A. and Katz, A. (1977) Oxygen isotope fractionation during the dolomitization of calcium carbonate. Geochim. Cosmochim. Acta, 41, 1431–38.
  • McCrea, J.M. 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. The Journal of Chemical Physics, 18, 849–857.
  • Murray, R.C., 1960, Origin of porosity in carbonate rocks: Journal of Sedimentary Petrology, v. 30, p. 59–64.
  • Murray, S.T., Arienzo, M.M. and Swart, P.K. (2016) Determining the D47 acid fractionation in dolomites. Geochim. Cosmochim. Acta, 174, 42–53.
  • Murray, S.T. and Swart, P.K. (2017) Evaluating formation fluid models and calibrations using clumped isotope paleothermometry on Bahamian dolomites. Geochim. Cosmochim. Acta, 206, 73–93.
  • Murray, Sean T., John A. Higgins, Chris Holmden, Chaojin Lu, and Peter K. Swart. 2021. 'Geochemical fingerprints of dolomitization in Bahamian carbonates: Evidence from sulphur, calcium, magnesium and clumped isotopes', Sedimentology, 68: 1-29.
  • Mülayim, O., Mancini. E., Çemen. İ., Yılmaz. İ.Ö. 2016. Upper Cenomanian–Lower Campanian Derdere and Karababa formations in the Çemberlitaşoil field, Southeastern Turkey: their microfacies analyses, depositional environments and sequence stratigraphy. Turkish Journal of Earth Sciences. 25. 46–63. https://doi.org/10. 3906/yer-1501-7.
  • Northrop, D.A. and Clayton, R.N. (1966) Oxygen isotope fractionation in systems containing dolomite. J. Geol., 74, 174–196.
  • O’Neil, J.R. and Mchuntington, S. (1966) Oxygen isotope fractionation in the system dolomite-calcite carbon dioxide. Science, 152, 198–201.
  • Özkan, R. & Altıner, D. 2019, The Cretaceous Mardin Group carbonates in southeast Turkey: lithostratigraphy, foraminiferal biostratigraphy, microfacies and sequence stratigraphic evolution. Cretaceous Research. 98. 153–178. https://doi.org/10.1016/j.cretres.2018. 09.021
  • Passey, B.H. and Henkes, G.A. (2012) Carbonate clumped isotope bond reordering and geospeedometry. Earth Planet. Sci. Lett., 351, 223–236.
  • Perincek, D., 1979. The geology of Hazro-Korudag-Cungus-Maden-Ergani-Hezan-Elazig-Malatya area. Geol. Soc. of Turkey., Sept.1979, 33 pp.
  • Reinhold, C., 1998. Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates: eastern Swabian, south Germany. Sediment. Geol. 121, 71 – 95.
  • Rigo De Righi, M. And Cortesini, A., 1964. Gravity tectonics in foothills structure belt of SE Turkey. AAPG Bull., 48, 1596-1611.
  • Rossinsky, V.J., Wanless, H.R., And Swart, P.K., 1986, Penetrative calcretes and their stratigraphic implications: Geology, v. 20, p. 331–334.
  • Sena, C.M., John, C.M., Jourdan, A.L., Vandeginste, V. & Manning, C. 2014. Dolomitization of lower cretaceous peritidal carbonates by modified seawater: constraints from clumped isotopic paleothermometry, elemental chemistry, and strontium isotopes. Journal of Sedimentary Research, 84, 552–566.
  • Sheppard, S.M. and Schwarcz, H.P. (1970) Fractionation of carbon and oxygen isotopes and magnesium between coexisting calcite and dolomite. Contrib. Mineral. Petrol., 26, 161.
  • Sibley, D. & Gregg, Jay. (1987). Classification of Dolomite Rock Texture. Journal of sedimentary petrology. 57. 967-975.
  • Stolper, D.A. & Eiler, J.M. 2015. The kinetics of solid state isotope-exchange reactions for clumped isotopes: a study of inorganic calcites and apatites from natural and experimental samples. American Journal of Science, 315, 363–411.
  • Swart, P.K. (2015) The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology, 62, 1233–1304.
  • Swart, P.K., Cantrell, D.L., Arienzo, M.M. and Murray, S.T. (2016) Evidence for high temperature and 18O-enriched fluids in the Arab-D of the Ghawar Field, Saudi Arabia. Sedimentology, 63, 1739–1752.
  • Swart, P.K., Cantrell, D.L., Westphal, H., Handford, C.R. and Kendall, C.G. (2005) Origin of dolomite in the Arab-D reservoir from the Ghawar field, Saudi Arabia: evidence from petrographic and geochemical constraints. J. Sed. Res., 75, 476–491.
  • Swart, P.K., James, N.P., Mallinson, D., Malone, M.J., Matsuda, H. and Simo, T. (2002) Data report: carbonate mineralogy of sites Drilled during Leg 182. In: Proceedings of the Ocean Drilling Program Scientific Results (Eds Feary, D.A., Hine, A.C. and Malone, M.J.), 182. Ocean Drilling Program, College Station, TX.
  • Swart, P.K., Murray, S.T., Staudigel, P.T. and Hodell, D.A. (2019) Oxygen isotopic exchange between CO2 and phosphoric acid: implications for the measurement of clumped isotopes in carbonates. Geochem., Geophys. Geosyst., 20, 1–21.
  • Vahrenkamp, V.C. and Swart, P.K. (1990) New distribution coefficient for the incorporation of strontium into dolomite and its implications for the formation of ancient dolomites. Geology, 18, 387–391.
  • Vahrenkamp, V.C., And Swart, P.K., 1994, Late Cenozoic dolomites of the Bahamas: metastable analogues for the genesis of ancient platform dolomites, in Purser, B., Tucker, M., and Zenger, D., eds., Dolomites: International Association of Sedimentologists, Special Publication 21, p. 133–153.
  • Vasconcelos, C., McKenzie, J.A., Warthmann, R. and Bernasconi, S.M. (2005) Calibration of the d18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology, 33, 317–320.
  • Veillard, C. & John, C. & Krevor, S. and Najorka, J. (2019). Rock-buffered recrystallization of Marion Plateau dolomites at low temperature evidenced by clumped isotope thermometry and X-Ray diffraction analysis. Geochimica et Cosmochimica Acta. 252. 10.1016/j.gca.2019.02.012.
  • Veizer, J., Ala, D. et al. 1999. Sr-87/Sr-86, delta C-13 and delta O-18 evolution of Phanerozoic seawater. Chemical Geology, 161, 59–88.
  • Veizer. J., Demovic. R., Strontium as a tool in facies analysis. Journal of Sedimentary Research 1974; 44 (1): 93–115. doi: https://doi.org/10.1306/74D72991-2B21-11D7-8648000102C1865D
  • Wacker, U., Fiebig, J., & Schoene, B. R. (2013). Clumped isotope analysis of carbonates: Comparison of two different acid digestion techniques. Rapid Communications in Mass Spectrometry, 27(14), 1631–1642. https://doi.org/10.1002/rcm.6609
  • Warren, J., 2000. Dolomite: occurrence, evolution and economically important associations. Earth Sci. Rev. 52, 1–81.
  • Winkelstern, I. Z., & Lohmann, K. C. (2016). Shallow burial alteration of dolomite and limestone clumped isotope geochemistry. Geology, 44(6), 467–470. https://doi.org/10.1130/G37809.1
  • Wygrala, B.P Integrated Study of An Oil Field in the Southern Po Basin, Northern Italy, Zentralbibliothek d Kernforschungsanlage, 1989.
  • Yılmaz, E. ve Duran, O., 1997, Güneydoğu Anadolu bölgesi otokton ve allokton birimler stratigrafi adlama sözlüğü “Lexicon”: TPAO Araştırma Merkezi Eğitim Yayınları no. 12, 460s.
  • Zenger, J.B. Dunham and R.L. Ethington),1980 pp. 87–110. Society of Economic Paleontologists and Mineralogists, Tulsa, OK.
  • Zenger, D. H., 1981, Stratigraphy and petrology of the Little Falls dolostone (Upper Cambrian), east-central New York: Map and Chart series 34, New York State Museum, The University of the State of New York, The State Education Department, 138 p.
  • Zheng Y.-F. (1999) Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem. J. 33, 109–126.

Determining of dolomitization age and depth of Mardin Group based on clumped isotopes and 1D basin model in SE Anatolia (SE Turkey)

Yıl 2022, , 212 - 238, 23.12.2022
https://doi.org/10.17824/yerbilimleri.1095003

Öz

The widespread Cretaceous aged Mardin Group is shallow marine carbonates and is the most proliferous section in SE Anatolia (SE Turkey). Clumped isotope temperatures were measured for Mardin dolomites between 92oC and 125oC. Using 1D basin model, clumped isotopes temperatures were converted to a depth and time for dolomitization from 2200 m (22 Ma) to 3420 m (14 Ma). Both the range of paleotemperature and burial depth reflects different degree of recrystalization event as a result of burial event. The oxygen isotopic composition of dolomitizing fluid varied between 3.32‰ and 6.31‰ which is significantly heavier than Cretaceous marine waters. The results indicates that late dolomitization are present in the study area and that a deeply buried dolomitizing pore fluid with high T has a negative influence on porosity system of the Mardin Group Reservoir.

Kaynakça

  • Ala, M.A. and Moss, 1979. Comparative petroleum geology of SE Turkey and NE Syria. Journ. Petrol. Best, J.A., Barazangi, M., Al-Saad, D., Sawaf, T. And Gebran, A., 1993. Continental margin Geol. 1, 3-27.
  • Ahmed, Sirwan. (2021). Stratigraphy, Geometry, and pattern of Imbricated zones, NW Zagros Fold and Thrust Belt in Iraqi Kurdistan Region. Journal of Zankoy Sulaimani - Part A. 23. 73. 10.17656/jzs.10843.
  • Akram, Revan & Faqi, Ayad & Jihad, Wrya & Sherwani, Govand & Al-Ansari, Nadhir. (2021). Source Rock Evaluation and 1-D Basin Modelling Approach for the Sargelu Formation, Atrush-2 Well, Kurdistan Region-Iraq. Open Journal of Geology. 11. 49-60. 10.4236/ojg.2021.113004.
  • Aqrawi, A.A.M., Goff, J.C., Horbury, A.D., Sadooni F.N. "The Petroleum Geology of Iraq". Scientific Press, Beaconsfield, UK, pp. 424. (2010).
  • Aqrawi, Adnan & Badics, Balazs (2015). Geochemical characterisation, volumetric assessment and shale-oil/gas potential of the Middle Jurassic–Lower Cretaceous source rocks of NE Arabian Plate. Geoarabia -Manama-. 20. 99-140. 10.2113/geoarabia200399.
  • Barata, J. , Vahrenkamp, V. , Van Laer, P. J., Swart, P.. , and S.. Murray. "A Regional Analysis of Clumped Isotope Geochemistry to Define the Timing of Creation of Micro-Porosity in a Lower Cretaceous Giant Reservoir." Paper presented at the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, November 2015. doi: https://doi.org/10.2118/177922-MS
  • Becker, S., Reuning, L., Amthor, J.E., & Kukla, P.A. (2019). Diagenetic Processes and Reservoir Heterogeneity in Salt-Encased Microbial Carbonate Reservoirs (Late Neoproterozoic, Oman). Geofluids.
  • Bonifacie, M., Calmels, D., Eiler, J. M., Horita, J., Chaduteau, C., Vasconcelos, C., Bourrand, J. J. (2017). Calibration of the dolomite clumped isotope thermometer from 25 to 350 °C, and implications for a universal calibration for all (Ca, Mg, Fe) CO3 carbonates. Geochimica et Cosmochimica Acta, 200, 255–279. Retrieved from http://dx.doi.org/10.1016/j.gca.2016.11.028
  • Budd, D.A., 1997, Cenozoic dolomites of carbonate islands: their attributes and origin: EarthScience Reviews, v. 42, p. 1–47.
  • Chaojin, Lu & Murray, Sean & Koeshidayatullah, Ardiansyah & Swart, Peter. (2022). Clumped Isotope Acid Fractionation Factors for Dolomite and Calcite Revisited: Should We Care?. Chemical Geology. 588. 120637. 10.1016/j.chemgeo.2021.120637.
  • Cordey, W.G., 1971. Stratigraphy and sedimentation of the Cretaceous Mardin Formation in SE Turkey. In: A.S. Campbell (Ed.). Geology and History of Turkey. 13th Annual Field Conf. of the Petrol. Expl. SOC. Libya. 317-348.
  • Çelikdemir EM, Dülger S, Görür N, Wagner C., Uygur K (1991). Stratigraphy, sedimentology, and hydrocarbon potential of the Mardin Group, SE Turkey. Special Publications of the European Association of Petroleum Geoscientists 1: 439–454.
  • Defliese, W.F., Hren, M.T. and Lohmann, K.C. (2015) Compositional and temperature effects of phosphoric acid fractionation on D47 analysis and implications for discrepant calibrations. Chem. Geol., 396, 51–60. Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., & Eiler, J. M. (2011). Defining an absolute reference frame for ‘clumped’ isotope studies of CO2. Geochimica et Cosmochimica Acta, 75 (22), 7117–7131. Retrieved from http://dx.doi.org/10.1016/j.gca.2011.09.025 doi: 10.1016/ 381 j.gca.2011.09.025
  • Dercourt, J., Ricou, L.E., and Vrielynck. B., 1993, Atlas Tethys of Palaeoenvironmental Maps: Commission for the Geologic Map of the World. Paris. 14 maps and explanatory notes.
  • Edilbi, A. N. F., Kolo, K., N. R. Muhammed et al., Source rock evaluation of shale intervals of the Kurra Chine Formation, Kurdistan Region-Iraq: An organic geochemical and basin modeling approach, Egyptian Journal of Petroleum, https://doi.org/10.1016/j.ejpe.2019.06.003
  • Eiler, J. M., 2007. “Clumped-isotope” geochemistry—The study of naturally-occurring, multiply substituted isotopologues. Earth and Planetary Science Letters, 262(3-4), 309-327.
  • Eiler JM. 2011. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quat. Sci. Rev. 30:3575–88
  • Emrich, K., Ehhalt, D.H. and Vogel, J.C. (1970) Carbon isotope fractionation during the precipitation of calcium carbonate. Earth Planet. Sci. Lett., 8, 363–371.
  • Epstein, S., Buchsbaum, R., Lowenstam, H. and Urey, H.C. (1951) Carbonate water isotopic temperature scale. Geol. Soc. Am. Bull., 62, 417–426.
  • Ferry, J.M., Passey, B.H., Vasconcelos, C. and Eiler, J.M. (2011) Formation of dolomite at 40-80°C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry. Geology, 39, 571–574.
  • Fritz, P. and Smith, D.G.W. (1970) The isotopic composition of secondary dolomites. Geochim. Cosmochim. Acta, 34, 1161–1173. Ghosh, P., Adkins, J., Affek, H., Balta, Guo and W., Schauble, E.A., Schrag, D. and Eiler, J.M., (2006) C-13-O-18 bonds in carbonate minerals: A new kind of paleothermometer. Geochim. Cosmochim. Acta, 70, 1439–1456.
  • Gregg, Jay & Sibley, D., (1984). Epigenetic Dolomitization and the Origin of Xenotopic Dolomite Texture. Journal of sedimentary petrology. 54. 908-931. 10.1306/212F8535-2B24-11D7-8648000102C1865D.
  • Hakimi, Mohammed & Al-Matary, Adel & Salad Hersi, Osman. (2018). Burial and thermal history reconstruction of the Mukalla-Sayhut Basin in the Gulf of Aden, Yemen: Implications for hydrocarbon generation from Paleocene potential source rock. Journal of African Earth Sciences. 144. 10.1016/j.jafrearsci.2018.04.005.
  • Henkes, G.A., Passey, B.H., Grossman, E.L., Shenton, B. J., Perez-Huerta, A. & Yancey, T.E. 2014. Temperature limits for preservation of primary calcite clumped isotope paleotemperatures. Geochimica et Cosmochimica Acta, 139, 362–382.
  • Horita, J. (2014) Oxygen and carbon isotope fractionation in the system dolomite–water–CO2 to elevated temperatures. Geochim. Cosmochim. Acta, 129, 111–124.
  • Huntington, K.W., Eiler, J.M., Affek, H.P., Guo, W., Bonifacie, M., Yeung, L.Y., Thiagarajan, N., Passey, B., Tripati, A., Daeron, M. and Came, R. (2009) Methods and limitations of ‘clumped’ CO2 isotope (D (47)) analysis by gas-source isotope ratio mass spectrometry. J. Mass Spectrom., 44, 1318–1329.
  • John, C.M. 2015. Burial Estimates Constrained By Clumped İsotope Thermometry: Example Of The Lower Cretaceous Qishn Formation (Haushi-Huqf High, Oman). In: Armitage, P.J., Butcher, A.R. Et Al. (eds) Reservoir Quality of Clastic and Carbonate Rocks: Analysis, Modelling and Prediction. Geological Society, London, Special Publications, 435. First published online November 18, 2015, https://doi.org/10.1144/SP435.5
  • Kupecz, J. A., & Land, L. S. (1991). Late‐stage dolomitization of the lower Ordovician Ellenburger Group, west Texas. Journal of Sedimentary Research, 61, 551–571.
  • Land, L.S. and Hoops, G.K. (1973) Sodium in carbonate sediments and rocks: a possible index to the salinity of diagenetic solutions. J. Sed. Petrol.. 43. 614–617.
  • Land, L.S. (1980a) Dolomite. In: Stable Isotopes in Sedimentary Geology (Eds M. Arthur, T. Anderson, I. Kaplan, J. Veizer and L. Land), pp. 4-3–4-22. SEPM, Tulsa, OK.
  • Land, L.S. (1980b) The isotopic and trace element geochemistry of dolomite: the state of the art. In: Concepts and Models of Dolomitization, Special Publication (Eds D.H.
  • Lewis, B., 1975, Nucleation and growth theory, in Pamplin, B. R., ed., Crystal Growth, New York, Pergamon Press, p. 12-39.
  • Lloyd, M.K., Ryb, U. and Eiler, J.M. (2018) Experimental calibration of clumped isotope reordering in dolomite. Geochim. Cosmochim. Acta, 242, 1–20.Lohmann, K.C., 1988, Geochemical Patterns of Meteoric Diagenetic Systems and Their Application to Studies of Paleokarst, in James, N.P., and Choquette, P.W., eds., Paleokarst: New York, Springer-Verlag, p. 58–80.
  • Lohmann, K.C. 1988. Geochemical pattern of meteoric diagenetic systems and their application to the studies of paleokarst. In N.P. James and P.W. Choquette (Eds.), Paleokarst. New York, Springer Verlag, p. 58-80.
  • MacDonald, J., John, C. & Girard, J.-P. 2015. Dolomitization processes in hydrocarbon reservoirs: insight from geothermometry using clumped isotopes. Procedia Earth and Planetary Science, 13, 265–268.
  • MacDonald. J. M. John. C. M. and Girard. J.-P. (2018) Testing clumped isotopes as a reservoir characterization tool: a comparison with fluid inclusions in a dolomitized sedimentary carbonate reservoir buried to 2-4 km. In: Lawson. M.. Formolo. M.J. and Eiler. J.M. (eds.) From Source to Seep: Geochemical Applications in Hydrocarbon Systems. Series: Geological Society. London. Special Publications (468). Geological Society of London. pp. 189-202. (doi:10.1144/SP468.7)
  • Machel, H.G., 1997. Recrystallization versus neomorphism, and the concept of dsignificant recrystallizationT in dolomite research. Sediment. Geol. 113, 161 – 168.
  • Machel, H.G., and Mountjoy, E.W., 1986, Chemistry and environments of dolomitization—a reappraisal: Earth-Science Reviews, v. 23, p. 175–122.
  • Mahmood, Taher & Abdullah, Enaam. (2019). Reconstruction of Paleo depth and Paleo temperature from C- O stable isotope records of Mishrif Formation, southern Iraq. 1730-1742. 10.24996/ijs.2019.60.8.10.
  • Mangenot, X., Gasparrini, M., Gerdes, A., Bonifacie, M., & Rouchon, V. (2018). An emerging thermochronometer for carbonate-bearing rocks: ∆47 /(U-Pb). Geology, 46 (12), 1067–1070. doi: 10.1130/G45196.1
  • Matthews, A. and Katz, A. (1977) Oxygen isotope fractionation during the dolomitization of calcium carbonate. Geochim. Cosmochim. Acta, 41, 1431–38.
  • McCrea, J.M. 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. The Journal of Chemical Physics, 18, 849–857.
  • Murray, R.C., 1960, Origin of porosity in carbonate rocks: Journal of Sedimentary Petrology, v. 30, p. 59–64.
  • Murray, S.T., Arienzo, M.M. and Swart, P.K. (2016) Determining the D47 acid fractionation in dolomites. Geochim. Cosmochim. Acta, 174, 42–53.
  • Murray, S.T. and Swart, P.K. (2017) Evaluating formation fluid models and calibrations using clumped isotope paleothermometry on Bahamian dolomites. Geochim. Cosmochim. Acta, 206, 73–93.
  • Murray, Sean T., John A. Higgins, Chris Holmden, Chaojin Lu, and Peter K. Swart. 2021. 'Geochemical fingerprints of dolomitization in Bahamian carbonates: Evidence from sulphur, calcium, magnesium and clumped isotopes', Sedimentology, 68: 1-29.
  • Mülayim, O., Mancini. E., Çemen. İ., Yılmaz. İ.Ö. 2016. Upper Cenomanian–Lower Campanian Derdere and Karababa formations in the Çemberlitaşoil field, Southeastern Turkey: their microfacies analyses, depositional environments and sequence stratigraphy. Turkish Journal of Earth Sciences. 25. 46–63. https://doi.org/10. 3906/yer-1501-7.
  • Northrop, D.A. and Clayton, R.N. (1966) Oxygen isotope fractionation in systems containing dolomite. J. Geol., 74, 174–196.
  • O’Neil, J.R. and Mchuntington, S. (1966) Oxygen isotope fractionation in the system dolomite-calcite carbon dioxide. Science, 152, 198–201.
  • Özkan, R. & Altıner, D. 2019, The Cretaceous Mardin Group carbonates in southeast Turkey: lithostratigraphy, foraminiferal biostratigraphy, microfacies and sequence stratigraphic evolution. Cretaceous Research. 98. 153–178. https://doi.org/10.1016/j.cretres.2018. 09.021
  • Passey, B.H. and Henkes, G.A. (2012) Carbonate clumped isotope bond reordering and geospeedometry. Earth Planet. Sci. Lett., 351, 223–236.
  • Perincek, D., 1979. The geology of Hazro-Korudag-Cungus-Maden-Ergani-Hezan-Elazig-Malatya area. Geol. Soc. of Turkey., Sept.1979, 33 pp.
  • Reinhold, C., 1998. Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates: eastern Swabian, south Germany. Sediment. Geol. 121, 71 – 95.
  • Rigo De Righi, M. And Cortesini, A., 1964. Gravity tectonics in foothills structure belt of SE Turkey. AAPG Bull., 48, 1596-1611.
  • Rossinsky, V.J., Wanless, H.R., And Swart, P.K., 1986, Penetrative calcretes and their stratigraphic implications: Geology, v. 20, p. 331–334.
  • Sena, C.M., John, C.M., Jourdan, A.L., Vandeginste, V. & Manning, C. 2014. Dolomitization of lower cretaceous peritidal carbonates by modified seawater: constraints from clumped isotopic paleothermometry, elemental chemistry, and strontium isotopes. Journal of Sedimentary Research, 84, 552–566.
  • Sheppard, S.M. and Schwarcz, H.P. (1970) Fractionation of carbon and oxygen isotopes and magnesium between coexisting calcite and dolomite. Contrib. Mineral. Petrol., 26, 161.
  • Sibley, D. & Gregg, Jay. (1987). Classification of Dolomite Rock Texture. Journal of sedimentary petrology. 57. 967-975.
  • Stolper, D.A. & Eiler, J.M. 2015. The kinetics of solid state isotope-exchange reactions for clumped isotopes: a study of inorganic calcites and apatites from natural and experimental samples. American Journal of Science, 315, 363–411.
  • Swart, P.K. (2015) The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology, 62, 1233–1304.
  • Swart, P.K., Cantrell, D.L., Arienzo, M.M. and Murray, S.T. (2016) Evidence for high temperature and 18O-enriched fluids in the Arab-D of the Ghawar Field, Saudi Arabia. Sedimentology, 63, 1739–1752.
  • Swart, P.K., Cantrell, D.L., Westphal, H., Handford, C.R. and Kendall, C.G. (2005) Origin of dolomite in the Arab-D reservoir from the Ghawar field, Saudi Arabia: evidence from petrographic and geochemical constraints. J. Sed. Res., 75, 476–491.
  • Swart, P.K., James, N.P., Mallinson, D., Malone, M.J., Matsuda, H. and Simo, T. (2002) Data report: carbonate mineralogy of sites Drilled during Leg 182. In: Proceedings of the Ocean Drilling Program Scientific Results (Eds Feary, D.A., Hine, A.C. and Malone, M.J.), 182. Ocean Drilling Program, College Station, TX.
  • Swart, P.K., Murray, S.T., Staudigel, P.T. and Hodell, D.A. (2019) Oxygen isotopic exchange between CO2 and phosphoric acid: implications for the measurement of clumped isotopes in carbonates. Geochem., Geophys. Geosyst., 20, 1–21.
  • Vahrenkamp, V.C. and Swart, P.K. (1990) New distribution coefficient for the incorporation of strontium into dolomite and its implications for the formation of ancient dolomites. Geology, 18, 387–391.
  • Vahrenkamp, V.C., And Swart, P.K., 1994, Late Cenozoic dolomites of the Bahamas: metastable analogues for the genesis of ancient platform dolomites, in Purser, B., Tucker, M., and Zenger, D., eds., Dolomites: International Association of Sedimentologists, Special Publication 21, p. 133–153.
  • Vasconcelos, C., McKenzie, J.A., Warthmann, R. and Bernasconi, S.M. (2005) Calibration of the d18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology, 33, 317–320.
  • Veillard, C. & John, C. & Krevor, S. and Najorka, J. (2019). Rock-buffered recrystallization of Marion Plateau dolomites at low temperature evidenced by clumped isotope thermometry and X-Ray diffraction analysis. Geochimica et Cosmochimica Acta. 252. 10.1016/j.gca.2019.02.012.
  • Veizer, J., Ala, D. et al. 1999. Sr-87/Sr-86, delta C-13 and delta O-18 evolution of Phanerozoic seawater. Chemical Geology, 161, 59–88.
  • Veizer. J., Demovic. R., Strontium as a tool in facies analysis. Journal of Sedimentary Research 1974; 44 (1): 93–115. doi: https://doi.org/10.1306/74D72991-2B21-11D7-8648000102C1865D
  • Wacker, U., Fiebig, J., & Schoene, B. R. (2013). Clumped isotope analysis of carbonates: Comparison of two different acid digestion techniques. Rapid Communications in Mass Spectrometry, 27(14), 1631–1642. https://doi.org/10.1002/rcm.6609
  • Warren, J., 2000. Dolomite: occurrence, evolution and economically important associations. Earth Sci. Rev. 52, 1–81.
  • Winkelstern, I. Z., & Lohmann, K. C. (2016). Shallow burial alteration of dolomite and limestone clumped isotope geochemistry. Geology, 44(6), 467–470. https://doi.org/10.1130/G37809.1
  • Wygrala, B.P Integrated Study of An Oil Field in the Southern Po Basin, Northern Italy, Zentralbibliothek d Kernforschungsanlage, 1989.
  • Yılmaz, E. ve Duran, O., 1997, Güneydoğu Anadolu bölgesi otokton ve allokton birimler stratigrafi adlama sözlüğü “Lexicon”: TPAO Araştırma Merkezi Eğitim Yayınları no. 12, 460s.
  • Zenger, J.B. Dunham and R.L. Ethington),1980 pp. 87–110. Society of Economic Paleontologists and Mineralogists, Tulsa, OK.
  • Zenger, D. H., 1981, Stratigraphy and petrology of the Little Falls dolostone (Upper Cambrian), east-central New York: Map and Chart series 34, New York State Museum, The University of the State of New York, The State Education Department, 138 p.
  • Zheng Y.-F. (1999) Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem. J. 33, 109–126.
Toplam 78 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Deniz Atasoy 0000-0001-7889-7100

Aynur Geçer Büyükutku 0000-0002-4058-0527

Aylin Geçer Bu kişi benim 0000-0002-7470-9560

Arzu Aktosun Bu kişi benim 0000-0002-0533-2501

Yayımlanma Tarihi 23 Aralık 2022
Gönderilme Tarihi 29 Mart 2022
Kabul Tarihi 6 Temmuz 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

EndNote Atasoy D, Geçer Büyükutku A, Geçer A, Aktosun A (01 Aralık 2022) Güneydoğu Anadolu Bölgesi Mardin Grubu dolomitlerinin dolomitleşme yaşlarının ve derinliklerinin kümelenmiş izotoplar ve 1B basen modeli kullanılarak belirlenmesi. Yerbilimleri 43 3 212–238.