Araştırma Makalesi
BibTex RIS Kaynak Göster

Kaya düşmesi tehlikesinin belirlenmesi ve önlenmesinde İHA tabanlı 3B modelleme çalışmaları: Murtaza Köyü örneği (Niğde)

Yıl 2022, Cilt: 43 Sayı: 2, 182 - 196, 28.07.2022
https://doi.org/10.17824/yerbilimleri.1021032

Öz

Bu çalışmada Niğde İli Merkez ilçe sınırları içerisinde yer alan ve aktif kaya düşme olaylarının yaşandığı Murtaza köyündeki kaya düşme riskleri, insansız hava aracı (İHA) tabalı oluşturulan yüksek çözünürlüklü sayısal arazi modeli (SAM), arazi ölçüm verileri ve üç boyutlu (3B) kaya düşme modellemeleri kullanılarak değerlendirilmiştir. Arazi çalışmaları sırasında düşme tehlikesi içeren 14 kaya bloğu tespit edilmiş ve kaya bloklarının herbirine ait geometrik ölçümler yapılmıştır. Bu ölçümler aracılığıyla kaya blokları RAMMS programı içerisinde geometrik özelliklerine bağlı olarak gerçeğe yakın şekilde modellenmiştir. Modellenen blokların her birinden 100 adet olmak üzere yüksek çözünürlüklü SAM üzerinden toplam 1400 kaya düşmesi simülasyonu gerçekleştirilmiştir. Böylece düşme tehlikesine sahip her bir kaya bloğunun kinetik enerjisi, zıplama yüksekliği, hareket hızı ve düşme yörüngeleri belirlenmiştir. Elde edilen sonuçlara göre, yerleşim birimlerine yakın mesafede bulunan kaya blokları çok uzak mesafelere taşınmadan sönümlenmektedir. Kinetik enerji, hız ve sıçrama yüksekliği değerleri oldukça düşük olan bu kaya blokları önemli riskler teşkil etmemektedir. Ancak yerleşim birimlerinin kuzeybatısındaki yamaçlarda bulunan, şekil bakımından eş boyutlu ve yüksek hacimdeki kaya blokları önemli tehlike barındırmaktadır. Bu kaya blokları geometrik özellikleri ve sahanın jeomorfolojisine bağlı olarak uzun mesafeler boyunca hareket edebilmekte, ev, yol vb., yapılar ile temas ederek yada topografyaya bağlı olarak eğimin azaldığı yerlerde enerjileri sönümlenmektedir. Bu alanda kaya bloklarının barındırdığı tehlikenin önlenmesi amacı ile model içerisinde 142 m uzunlukta ve 1,5 m genişlikte istinat duvarları oluşturulmuştur. İstinat duvarı modeli sonuçlarına göre kaya bloklarına yakın alanlarda 5 metre yüksekliğinde, kaynak alanlarına uzak konumda ise 3 metre yüksekliğinde bir istinat duvar kaya bloklarının ilerlemesini durdurmaktadır.

Teşekkür

Çalışmaya katkılarından dolayı Niğde Valiliği İl Afet ve Acil Durum Müdürlüğü’ne teşekkür ederiz.

Kaynakça

  • AFAD 2018. Murtazaköy Jeolojik Etüd Raporu. T.C. Niğde Valiliği, İl Afet ve Acil Durum Müdürlüğü., 11pp.
  • Ağca, M., Gültekin, N. and Kaya, E. 2020. İnsansız hava aracından elde edilen veriler ile kaya düşme potansiyelinin değerlendirilmesi: Adam Kayalar örneği, Mersin. Geomatik, 5, 134–145.
  • Akın, M., Dinçer, İ., Ok, A.Ö., Orhan, A., Akin, M.K. and Topal, T. 2021. Assessment of the effectiveness of a rockfall ditch through 3-D probabilistic rockfall simulations and automated image processing. Engineering Geology, 283, 106001.
  • Akın, M., Dinçer, İ., Orhan, A., Ok, A., Akin, M. and Topal, T. 2019. Evaluation of the Performance of a Rockfall Ditch by 3-Dimensional Rockfall Analyses: Akköy (Ürgüp) Case. Jeoloji Muhendisligi Dergisi, 43, 211–232.
  • Aydın, A. and Eker, R. 2017. Kaya yuvarlanmalarından etkilenen orman alanlarının belirlenmesi: İnebolu örneği. İstanbul Üniversitesi Orman Fakültesi Dergisi, 67, 136–149.
  • Aydın, A., Köse, N., Akkemik, Ü. and Yurtseven, H. 2012. Assessment and analysis of rockfall-caused tree injuries in a Turkish fir stand: A case study from Kastamonu-Turkey. Journal of Mountain Science, 9, 137–146.
  • Azzoni, A., La Barbera, G. and Zaninetti, A. 1995. Analysis and prediction of rockfalls using a mathematical model. International Journal of Rock Mechanics and Mining Sciences and, 32, 709–724.
  • Bartelt, P., Bieler, C., Bühler, Y., Christen, M., Christen, M., Dreier, L., Gerber, W., Glover, J., Schneider, M., Glocker, C., Leine, R. and Schweizer, A. 2016. RAMMS: ROCKFALL User Manual v1.6. WSL Institute for Snow and Avalanche Research SLF, 102pp.
  • Borella, J.W., Quigley, M. and Vick, L. 2016. Anthropocene rockfalls travel farther than prehistoric predecessors. Science Advances, 2.
  • Charalambous, S. and Sakellariou, M. 2007. Estimation of rockfall hazard using a GIS-based three-dimensional rockfall simulation model. Bulletin of the Geological Society of Greece, 40, 1934.
  • Chen, G., Zheng, L., Zhang, Y. and Wu, J. 2013. Numerical simulation in rockfall analysis: A close comparison of 2-D and 3-D DDA. Rock Mechanics and Rock Engineering, 46, 527–541.
  • Christen, M., Bühler, Y., Bartelt, P., Leine, R., Glover, J., Schweizer, A., Graf, C., Mcardell, B.W., Gerber, W., Deubelbeiss, Y., Feistl, T. and Volkwein, A. 2012. Integral Hazard Management Using a Unified Software Environment Numerical Simulation Tool ‘RAMMS’. In: 12th Congress INTERPRAEVENT. Grenoble, 77–86.
  • Çiflikli, M. and Bozkaya, Ö. 2018. Niğde Volkanik Kompleksi (Kb Niğde) Erken-Geç Pliyosen Yaşli Melendiz Volkanitlerinin Hidrotermal Alterasyon Özellikleri. In: Uluslararası katılımlı Kapadokya Yerbilimleri Sempozyumu 24-26 Ekim 2018, Niğde. Niğde, 242–248.
  • Crosta, G.B. and Agliardi, F. 2003. Natural Hazards and Earth System Sciences A methodology for physically based rockfall hazard assessment. Natural Hazards and Earth System Sciences, 3, 407–422.
  • Crosta, G.B., Agliardi, F., Frattini, P. and Lari, S. 2015. Key Issues in Rock Fall Modeling, Hazard and Risk Assessment for Rockfall Protection. In: G. Lollino (Editor) Engineering Geology for Society and Territory - Volume 2: Landslide Processes. Switzerland, Springer International Publishing, 43–58.
  • Dinçer, İ., Orhan, A., Frattini, P. and Crosta, G.B. 2016. Rockfall at the heritage site of the Tatlarin Underground City (Cappadocia, Turkey). Natural Hazards, 82, 1075–1098.
  • Dorren, L.K.A., Berger, F. and Putters, U.S. 2006. Real-size experiments and 3-D simulation of rockfall on forested and non-forested slopes. Natural Hazards and Earth System Sciences, 6, 145–153.
  • Ergünay, O. 2007. Türkiyenin Afet Profili. In: TMMOB Afet Sempozyumu. Ankara, 1–14.
  • Evans, S.G. and Hungr, O. 1993. The assessment of rockfall hazard at the base of talus slopes. Canadian Geotechnical Journal, 30, 620–636.
  • Fityus, S.G., Giacomini, A. and Buzzi, O. 2013. The significance of geology for the morphology of potentially unstable rocks. Engineering Geology, 162, 43–52.
  • Geniş, M., Sakız, U. and Çolak Aydıner, B. 2017. A stability assessment of the rockfall problem around the Gökgöl Tunnel (Zonguldak, Turkey). Bulletin of Engineering Geology and the Environment, 76, 1237–1248.
  • Gökçe, O., Özden, Ş. and Demir, A. 2008. Türkiye’de afetlerin mekansal ve istatistiksel dağılımı, Afet bilgileri envanteri. Ankara, BAYINDIRLIK VE İSKAN BAKANLIĞI, 122pp.
  • Gül, M., Özbek, A. and Karacan, E. 2016. Rock fall hazard assessment in Asar Hill, ancient Mabolla City, Mugla—SW Turkey. Environmental Earth Sciences, 75, 1310.
  • Guzzetti, F., Crosta, G., Detti, R. and Agliardi, F. 2002. STONE: A computer program for the three-dimensional simulation of rock-falls. Computers and Geosciences, 28, 1079–1093.
  • Katz, O., Reichenbach, P. and Guzzetti, F. 2011. Rock fall hazard along the railway corridor to Jerusalem, Israel, in the Soreq and Refaim valleys. Natural Hazards, 56, 649–665.
  • Kayabaşı, A. 2018. The assesment of rockfall analysis near a railroad: a case study at the Kızılinler village of Eskişehir, Turkey. Arabian Journal of Geosciences, 11, 800.
  • Kutluca, A.K. 2006. The Izmir City and Natural Hazard Risks. In: 46th Congress of the European Regional Science Association: ‘Enlargement, Southern Europe and the Mediterranean’. Volos, Greece, 46th Congress of the European Regional Science Association: ‘Enlargement, Southern Europe and the Mediterranean’, 1–22.
  • Lan, H., Derek Martin, C. and Lim, C.H. 2007. RockFall analyst: A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Computers and Geosciences, 33, 262–279.
  • Leine, R.I., Schweizer, A., Christen, M., Glover, J., Bartelt, P. and Gerber, W. 2014. Simulation of rockfall trajectories with consideration of rock shape., 241–271pp.
  • Liu, G., Li, J. and Wang, Z. 2021. Experimental Verifications and Applications of 3D-DDA in Movement Characteristics and Disaster Processes of Rockfalls. Rock Mechanics and Rock Engineering.
  • Lu, G., Caviezel, A., Christen, M., Demmel, S.E., Ringenbach, A., Bühler, Y., Dinneen, C.E., Gerber, W. and Bartelt, P. 2019. Modelling rockfall impact with scarring in compactable soils. Landslides, 16, 2353–2367.
  • Mary Vick, L., Zimmer, V., White, C., Massey, C. and Davies, T. 2019. Significance of substrate soil moisture content for rockfall hazard assessment. Natural Hazards and Earth System Sciences, 19, 1105–1117.
  • Matas, G., Lantada, N., Corominas, J., Gili, J.A., Ruiz-Carulla, R. and Prades, A. 2017. RockGIS: a GIS-based model for the analysis of fragmentation in rockfalls. Landslides, 14, 1565–1578.
  • Öztürk, M.Z., Çetinkaya, G. and Aydın, S. 2017. Köppen-Geiger İklim Sınıflandırmasına Göre Türkiye’nin İklim Tipleri. Coğrafya Dergisi / Journal of Geography, 35, 17–27.
  • Perret, S., Dolf, F. and Kienholz, H. 2004. Rockfalls into forests: Analysis and simulation of rockfall trajectories - considerations with respect to mountainous forests in Switzerland. Landslides, 1, 123–130.
  • Pradhan, B. and Fanos, A.M. 2017. Rockfall Hazard Assessment: An Overview. In: Laser Scanning Applications in Landslide Assessment. Cham, Springer International Publishing, 299–322.
  • Singh, P.K., Kainthola, A., Panthee, S. and Singh, T.N. 2016. Rockfall analysis along transportation corridors in high hill slopes. Environmental Earth Sciences, 75, 1–11.
  • Taga, H. and Zorlu, K. 2016. Assessment of rockfall hazard on the steep-high slopes: Ermenek (Karaman, Turkey). Natural Hazards and Earth System Sciences Discussions, 1–32.
  • Tanarro, L.M. and Munoz, J. 2012. Rockfalls in the Duratón canyon, central Spain: Inventory and statistical analysis. Geomorphology, 169–170, 17–29.
  • Topal, T., Akın, M. and Özden, U.A. 2007. Assessment of rockfall hazard around Afyon Castle, Turkey. Environmental Geology, 53, 191–200.
  • Utlu, M., Öztürk, M.Z. and Şimşek, M. 2020a. Emli Vadisi’ndeki (Aladağlar) Talus Depolarının Kantitatif Analizlere Göre İncelenmesi. In: S. Birinci, Ç. Kıvanç Kaymaz and Y. Kızılkan (Editors) COĞRAFİ PERSPEKTİFLE DAĞ VE DAĞLIK ALANLAR (Sürdürülebilirlik-Yönetim-Örnek Alan İncelemeleri). İstanbul-Turkey, Kriter Yayınevi, 51–72.
  • Utlu, M., Öztürk, M.Z. and Şimşek, M. 2020b. Rockfall analysis based on UAV technology in Kazıklıali Gorge, Aladağlar (Taurus Mountains, Turkey). International Journal of Environment and Geoinformatics, 7, 239–251.
  • Utlu, M., Öztürk, M.Z. and Şimşek, M. 2021. Yüksek Çözünürlüklü Sayısal Yüzey Modellerine Uygulanan Üç Boyutlu Analizler ile Kaya Düşmelerine Ait Sayısal Risk Değerlendirmesi: Ünlüyaka Köyü (Niğde, Türkiye). In: M.F. Döker and E. Akköprü (Editors) COĞRAFYA ARAŞTIRMALARINDA COĞRAFİ BİLGİ SİSTEMLERİ UYGULAMALARI II. Ankara-Turkey, PEGEM AKADEMi, 51–69.
  • Varnes, D.J. 1978. Slope Movement Types and Processes. In: R.L. Schuster and R.J. Krizek (Editors) Landslides: Analysis and Control, Transportation Research Board. 11–33.
  • Wieczorek, G.F., Stock, G.M., Reichenbach, P., Snyder, J.B., Borchers, J.W. and Godt, J.W. 2008. Investigation and hazard assessment of the 2003 and 2007 Staircase Falls rock falls, Yosemite National Park, California, USA. Natural Hazards and Earth System Science, 8, 421–432.
  • Žabota, B., Repe, B. and Kobal, M. 2019. Influence of digital elevation model resolution on rockfall modelling. Geomorphology, 328, 183–195.

UAV based 3D modeling analysis in determining and preventing rockfall hazard: A case study from Murtaza Village (Niğde, Turkey)

Yıl 2022, Cilt: 43 Sayı: 2, 182 - 196, 28.07.2022
https://doi.org/10.17824/yerbilimleri.1021032

Öz

In this study, rockfall risks in Murtaza village, which is located within the central district of Niğde province and where active rockfall events are experienced, were evaluated using a high-resolution digital terrain model (DTM) created based on unmanned air vehicle (UAV) images, field measurement data, and three dimensional (3D) rockfall models. During the field studies, 14 rock blocks that were in danger of falling were identified and geometric measurements for each of the rock blocks were made. By using field measurements, the rock blocks are modeled their geometric properties in the RAMMS program and a total of 1400 rockfall simulations, 100 from each of the modeled blocks were carried out on the high-resolution DTM. Thus, the kinetic energy, jump height, velocity, and fall trajectories of each rock block were determined. According to the results, the rock blocks that are close to the settlements are damped without being transported to very long distances. These blocks do not constitute significant risks since having values such as low energy, speed, and jump height. However, the rock blocks of equant shape and high volume, located on the northwest slopes above the settlements, constitute a significant risk. These rock blocks move for long distances depend on their geometric properties and geomorphological characteristics of the study area and their energy is absorbed in contact with houses, roads, etc., structures, or in places where the slope decreases on the topography. To prevent the danger of rock blocks in this area, retaining walls have 142 m long and 1.5 m wide were created within the rockfall models. According to the results of these models, while a 5 m high retaining wall in areas close to the source of rock blocks, a 3 m high retaining wall far from the source areas stops the progress of the rock blocks.

Kaynakça

  • AFAD 2018. Murtazaköy Jeolojik Etüd Raporu. T.C. Niğde Valiliği, İl Afet ve Acil Durum Müdürlüğü., 11pp.
  • Ağca, M., Gültekin, N. and Kaya, E. 2020. İnsansız hava aracından elde edilen veriler ile kaya düşme potansiyelinin değerlendirilmesi: Adam Kayalar örneği, Mersin. Geomatik, 5, 134–145.
  • Akın, M., Dinçer, İ., Ok, A.Ö., Orhan, A., Akin, M.K. and Topal, T. 2021. Assessment of the effectiveness of a rockfall ditch through 3-D probabilistic rockfall simulations and automated image processing. Engineering Geology, 283, 106001.
  • Akın, M., Dinçer, İ., Orhan, A., Ok, A., Akin, M. and Topal, T. 2019. Evaluation of the Performance of a Rockfall Ditch by 3-Dimensional Rockfall Analyses: Akköy (Ürgüp) Case. Jeoloji Muhendisligi Dergisi, 43, 211–232.
  • Aydın, A. and Eker, R. 2017. Kaya yuvarlanmalarından etkilenen orman alanlarının belirlenmesi: İnebolu örneği. İstanbul Üniversitesi Orman Fakültesi Dergisi, 67, 136–149.
  • Aydın, A., Köse, N., Akkemik, Ü. and Yurtseven, H. 2012. Assessment and analysis of rockfall-caused tree injuries in a Turkish fir stand: A case study from Kastamonu-Turkey. Journal of Mountain Science, 9, 137–146.
  • Azzoni, A., La Barbera, G. and Zaninetti, A. 1995. Analysis and prediction of rockfalls using a mathematical model. International Journal of Rock Mechanics and Mining Sciences and, 32, 709–724.
  • Bartelt, P., Bieler, C., Bühler, Y., Christen, M., Christen, M., Dreier, L., Gerber, W., Glover, J., Schneider, M., Glocker, C., Leine, R. and Schweizer, A. 2016. RAMMS: ROCKFALL User Manual v1.6. WSL Institute for Snow and Avalanche Research SLF, 102pp.
  • Borella, J.W., Quigley, M. and Vick, L. 2016. Anthropocene rockfalls travel farther than prehistoric predecessors. Science Advances, 2.
  • Charalambous, S. and Sakellariou, M. 2007. Estimation of rockfall hazard using a GIS-based three-dimensional rockfall simulation model. Bulletin of the Geological Society of Greece, 40, 1934.
  • Chen, G., Zheng, L., Zhang, Y. and Wu, J. 2013. Numerical simulation in rockfall analysis: A close comparison of 2-D and 3-D DDA. Rock Mechanics and Rock Engineering, 46, 527–541.
  • Christen, M., Bühler, Y., Bartelt, P., Leine, R., Glover, J., Schweizer, A., Graf, C., Mcardell, B.W., Gerber, W., Deubelbeiss, Y., Feistl, T. and Volkwein, A. 2012. Integral Hazard Management Using a Unified Software Environment Numerical Simulation Tool ‘RAMMS’. In: 12th Congress INTERPRAEVENT. Grenoble, 77–86.
  • Çiflikli, M. and Bozkaya, Ö. 2018. Niğde Volkanik Kompleksi (Kb Niğde) Erken-Geç Pliyosen Yaşli Melendiz Volkanitlerinin Hidrotermal Alterasyon Özellikleri. In: Uluslararası katılımlı Kapadokya Yerbilimleri Sempozyumu 24-26 Ekim 2018, Niğde. Niğde, 242–248.
  • Crosta, G.B. and Agliardi, F. 2003. Natural Hazards and Earth System Sciences A methodology for physically based rockfall hazard assessment. Natural Hazards and Earth System Sciences, 3, 407–422.
  • Crosta, G.B., Agliardi, F., Frattini, P. and Lari, S. 2015. Key Issues in Rock Fall Modeling, Hazard and Risk Assessment for Rockfall Protection. In: G. Lollino (Editor) Engineering Geology for Society and Territory - Volume 2: Landslide Processes. Switzerland, Springer International Publishing, 43–58.
  • Dinçer, İ., Orhan, A., Frattini, P. and Crosta, G.B. 2016. Rockfall at the heritage site of the Tatlarin Underground City (Cappadocia, Turkey). Natural Hazards, 82, 1075–1098.
  • Dorren, L.K.A., Berger, F. and Putters, U.S. 2006. Real-size experiments and 3-D simulation of rockfall on forested and non-forested slopes. Natural Hazards and Earth System Sciences, 6, 145–153.
  • Ergünay, O. 2007. Türkiyenin Afet Profili. In: TMMOB Afet Sempozyumu. Ankara, 1–14.
  • Evans, S.G. and Hungr, O. 1993. The assessment of rockfall hazard at the base of talus slopes. Canadian Geotechnical Journal, 30, 620–636.
  • Fityus, S.G., Giacomini, A. and Buzzi, O. 2013. The significance of geology for the morphology of potentially unstable rocks. Engineering Geology, 162, 43–52.
  • Geniş, M., Sakız, U. and Çolak Aydıner, B. 2017. A stability assessment of the rockfall problem around the Gökgöl Tunnel (Zonguldak, Turkey). Bulletin of Engineering Geology and the Environment, 76, 1237–1248.
  • Gökçe, O., Özden, Ş. and Demir, A. 2008. Türkiye’de afetlerin mekansal ve istatistiksel dağılımı, Afet bilgileri envanteri. Ankara, BAYINDIRLIK VE İSKAN BAKANLIĞI, 122pp.
  • Gül, M., Özbek, A. and Karacan, E. 2016. Rock fall hazard assessment in Asar Hill, ancient Mabolla City, Mugla—SW Turkey. Environmental Earth Sciences, 75, 1310.
  • Guzzetti, F., Crosta, G., Detti, R. and Agliardi, F. 2002. STONE: A computer program for the three-dimensional simulation of rock-falls. Computers and Geosciences, 28, 1079–1093.
  • Katz, O., Reichenbach, P. and Guzzetti, F. 2011. Rock fall hazard along the railway corridor to Jerusalem, Israel, in the Soreq and Refaim valleys. Natural Hazards, 56, 649–665.
  • Kayabaşı, A. 2018. The assesment of rockfall analysis near a railroad: a case study at the Kızılinler village of Eskişehir, Turkey. Arabian Journal of Geosciences, 11, 800.
  • Kutluca, A.K. 2006. The Izmir City and Natural Hazard Risks. In: 46th Congress of the European Regional Science Association: ‘Enlargement, Southern Europe and the Mediterranean’. Volos, Greece, 46th Congress of the European Regional Science Association: ‘Enlargement, Southern Europe and the Mediterranean’, 1–22.
  • Lan, H., Derek Martin, C. and Lim, C.H. 2007. RockFall analyst: A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Computers and Geosciences, 33, 262–279.
  • Leine, R.I., Schweizer, A., Christen, M., Glover, J., Bartelt, P. and Gerber, W. 2014. Simulation of rockfall trajectories with consideration of rock shape., 241–271pp.
  • Liu, G., Li, J. and Wang, Z. 2021. Experimental Verifications and Applications of 3D-DDA in Movement Characteristics and Disaster Processes of Rockfalls. Rock Mechanics and Rock Engineering.
  • Lu, G., Caviezel, A., Christen, M., Demmel, S.E., Ringenbach, A., Bühler, Y., Dinneen, C.E., Gerber, W. and Bartelt, P. 2019. Modelling rockfall impact with scarring in compactable soils. Landslides, 16, 2353–2367.
  • Mary Vick, L., Zimmer, V., White, C., Massey, C. and Davies, T. 2019. Significance of substrate soil moisture content for rockfall hazard assessment. Natural Hazards and Earth System Sciences, 19, 1105–1117.
  • Matas, G., Lantada, N., Corominas, J., Gili, J.A., Ruiz-Carulla, R. and Prades, A. 2017. RockGIS: a GIS-based model for the analysis of fragmentation in rockfalls. Landslides, 14, 1565–1578.
  • Öztürk, M.Z., Çetinkaya, G. and Aydın, S. 2017. Köppen-Geiger İklim Sınıflandırmasına Göre Türkiye’nin İklim Tipleri. Coğrafya Dergisi / Journal of Geography, 35, 17–27.
  • Perret, S., Dolf, F. and Kienholz, H. 2004. Rockfalls into forests: Analysis and simulation of rockfall trajectories - considerations with respect to mountainous forests in Switzerland. Landslides, 1, 123–130.
  • Pradhan, B. and Fanos, A.M. 2017. Rockfall Hazard Assessment: An Overview. In: Laser Scanning Applications in Landslide Assessment. Cham, Springer International Publishing, 299–322.
  • Singh, P.K., Kainthola, A., Panthee, S. and Singh, T.N. 2016. Rockfall analysis along transportation corridors in high hill slopes. Environmental Earth Sciences, 75, 1–11.
  • Taga, H. and Zorlu, K. 2016. Assessment of rockfall hazard on the steep-high slopes: Ermenek (Karaman, Turkey). Natural Hazards and Earth System Sciences Discussions, 1–32.
  • Tanarro, L.M. and Munoz, J. 2012. Rockfalls in the Duratón canyon, central Spain: Inventory and statistical analysis. Geomorphology, 169–170, 17–29.
  • Topal, T., Akın, M. and Özden, U.A. 2007. Assessment of rockfall hazard around Afyon Castle, Turkey. Environmental Geology, 53, 191–200.
  • Utlu, M., Öztürk, M.Z. and Şimşek, M. 2020a. Emli Vadisi’ndeki (Aladağlar) Talus Depolarının Kantitatif Analizlere Göre İncelenmesi. In: S. Birinci, Ç. Kıvanç Kaymaz and Y. Kızılkan (Editors) COĞRAFİ PERSPEKTİFLE DAĞ VE DAĞLIK ALANLAR (Sürdürülebilirlik-Yönetim-Örnek Alan İncelemeleri). İstanbul-Turkey, Kriter Yayınevi, 51–72.
  • Utlu, M., Öztürk, M.Z. and Şimşek, M. 2020b. Rockfall analysis based on UAV technology in Kazıklıali Gorge, Aladağlar (Taurus Mountains, Turkey). International Journal of Environment and Geoinformatics, 7, 239–251.
  • Utlu, M., Öztürk, M.Z. and Şimşek, M. 2021. Yüksek Çözünürlüklü Sayısal Yüzey Modellerine Uygulanan Üç Boyutlu Analizler ile Kaya Düşmelerine Ait Sayısal Risk Değerlendirmesi: Ünlüyaka Köyü (Niğde, Türkiye). In: M.F. Döker and E. Akköprü (Editors) COĞRAFYA ARAŞTIRMALARINDA COĞRAFİ BİLGİ SİSTEMLERİ UYGULAMALARI II. Ankara-Turkey, PEGEM AKADEMi, 51–69.
  • Varnes, D.J. 1978. Slope Movement Types and Processes. In: R.L. Schuster and R.J. Krizek (Editors) Landslides: Analysis and Control, Transportation Research Board. 11–33.
  • Wieczorek, G.F., Stock, G.M., Reichenbach, P., Snyder, J.B., Borchers, J.W. and Godt, J.W. 2008. Investigation and hazard assessment of the 2003 and 2007 Staircase Falls rock falls, Yosemite National Park, California, USA. Natural Hazards and Earth System Science, 8, 421–432.
  • Žabota, B., Repe, B. and Kobal, M. 2019. Influence of digital elevation model resolution on rockfall modelling. Geomorphology, 328, 183–195.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Muhammed Zeynel Öztürk 0000-0002-9834-7680

Mustafa Utlu 0000-0002-7508-4478

Mesut Şimşek 0000-0002-4678-4336

Yayımlanma Tarihi 28 Temmuz 2022
Gönderilme Tarihi 9 Kasım 2021
Kabul Tarihi 17 Mayıs 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 43 Sayı: 2

Kaynak Göster

EndNote Öztürk MZ, Utlu M, Şimşek M (01 Temmuz 2022) Kaya düşmesi tehlikesinin belirlenmesi ve önlenmesinde İHA tabanlı 3B modelleme çalışmaları: Murtaza Köyü örneği (Niğde). Yerbilimleri 43 2 182–196.