Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 23 Sayı: 1, 87 - 95, 27.04.2018

Öz

Kaynakça

  • Bernfeld, P., 1955, Enzymes carbohydrate metabolism, In Methods In Enzymology Academic Press, vol.17 p.149-158
  • Boyanov, M.I., Kelly, S.D., Kemner, K.M., Bunker, B.A., Fein, J.B., Fowle, D.A., 2003. Adsorption of cadmium to Bacillus subtilis bacterial cell walls: A pH-dependent X-ray absorption fine structure spectroscopy study. Geochi. et Cosmochi. Acta. 67, 3299-3311.
  • Costa, A.C.A., Duta F.P., 2001. Bioaccumulation of copper, zinc, cadmium,and lead by Bacillus sp.,Bacillus cereus, Bacillus sphaericus, and Bacillus subtilis. Braz.J. Microbiol. 32, 876-887.
  • Donmez, G., Aksu, Z., 2001. Bioaccumulation of copper (II) and nickel (II) by the non-adapted and adapted growing Candida spp. Water Res. 35, 135-142.
  • El-Helow, E.R., Sabry, S.A., Amer, R.M. 2000. Cadmium biosorption by a cadmium resistant strain of Bacillus thuringiensis: regulation and optimization of cell surface affinity for metal cations. Biometals, 13, 273–280.
  • Gazso, L.G., 2001. The Key microbial processses in the removal of toxic metals and radionuclides from the envoronment. Cejoem, 7, 178-185.
  • Gupta, R., Ahuja, P., Khan, S., Saxena, R.K., Mohapatra, H., 2000. Microbial biosorbents: Meeting challenges of heavy metal pollution in aqueous solutions. Current Science, 78: 967–973.
  • Hassen, A., Saidi. N., Cherifh, M., Boudabous, A., 1998, Effects of heavy metals on Pseudomonas aueriginosa and Bacillus thuringiensis. Bioresource Technology, 65, 73-82.
  • Hsieh, J.L., Chen, C.Y., Chang, J.S., Endo, G., Huang, C.C., 2007. Overexpression of a Single Membran Component from the Bacillus mer Operon Enhanced Mercury Resistance in an Escherichia coli Host. Biosci. Biotechnol. Biochem. 71,1494-1499.
  • Hu, Q., Qı, H., Baı, Z., Dou, M., Zeng, J., Zhang, F., Zhang, H., 2007, Biosorption of cadmium by a Cd2+ hyperresistant Bacillus cereus strain HQ-1 newly isolated from a lead and zinc mine. World J. Microbiol Biotechnol., 23, 971–976.
  • Malik, A., 2004. Metal bioremediation through growing cells. Environment International, 30, 261-278.
  • Ozdemir, S., Matpan, F., Guven, K., Baysal, Z. 2011, Production and characterization of partially purified extracellular thermostable α-amylase by Bacillus subtilis in Submerged fermentation (SmF)'', Preparative Biochemistry and Biotechnology, 41, 365-381.
  • Ozdemir, S., Kilinc, E., Poli, A., Nicolaus, B., Guven, K., 2012, Cd, Cu, Ni, Mn and Zn resistance and bioaccumulation by thermophilic bacteria. Geobacillus toebii subsp. decanicus and Geobacillus thermoleovorans subsp. stromboliensis'', World Journal of Microbiology and Biotechnology, 28, 155–163.
  • Ozdemir, S., Kilinc, E., 2012, Geobacillus thermoleovorans immobilized on Amberlite XAD-4 resin as a sorbent for solid phase extraction of uranium(VI) prior to its spectrophotometric determination, Microchimica Acta, 178, 389–397.
  • Ozdemir, S., Kilinc, E., Poli, A., Nicolaus, B., 2013, Resistance and Bioaccumulation of Cd2+, Cu2+, Co2+ and Mn2+ by thermophilic bacteria, Geobacillus thermantarticus and Anoxybacillus amylolyticus, Annals of Microbiology, 63, 1379-1385.
  • Saglam N., Cihangir N., 1995. Agır Metallerin Biyolojik Süreçlerle Biyosorbsiyonu Çalısmaları. Hacettepe Üniversitesi Egitim Fakültesi Dergisi 11: 157-161.
  • Satchanska, G., Pentcheva, E.N., Atanasova, R., Groudeva, V., Trifonova, R., Golovinsky, E. 2005, Microbial diversity in heavy-metal polluted waters. Environ Biotechnol, 19,61–67.
  • Spain, A., 2003. Implication of Microbial heavy metal tolerance in the environment. Reviews in Undergra. Res., 2, 1-6.
  • Theodorakopoulos, N., Chapon, V., Coppin, F., Floriani, M., Vercouter, T., Sergeant, C., Camilleri, V., Berthomieu, C., Février, L., 2015, Use of combined microscopic and spectroscopic techniques to reveal interactions between uranium and Microbacterium sp. A9, a strain isolated from the Chernobyl exclusion zone. J Hazard Mater. 285, 285-293.
  • Vijayaraghavan, K., Yun, Y.S., 2008. Bacterial biosorbents and biosorption. Biotechnology Advances. 26, 266–291.

Termofilik Exiguobacterium profundum Kullanarak Uranyum(VI) Dirençliliği ve Biyoakümülasyonu ve UV-vis Spektrofotometrik Tayini

Yıl 2018, Cilt: 23 Sayı: 1, 87 - 95, 27.04.2018

Öz















Bu çalışmada termofilik Exiguobacterium profundum'un uranyum(VI) dirençliliği ve biyoakümülasyonu çalışılmıştır. Sıvı ve
katı besiyerleri için minimum inhibisyon konsantrasyon (MIK) değerleri katı
besiyeri için 82 mg/L ve sıvı besiyeri için 15 mg/L olarak bulunmuştur.
Ayrıca  farklı U(VI) konsantrasyonlarının
E. profundum'un üremesi ve biyoakümülasyon kapasitesi sıvı fermentasyon ortamında incelenmiştir.
Kontrol ile karşılaştırıldığı zaman, test edilen tüm U(VI) konsantrasyonlarında
bakteri üremesi önemli derecede etkilenmemiştir. En yüksek biyoakümülasyon
kapasitesi 50.32 mg U(VI)/ g kuru bakteri olarak belirlenmiştir. Farklı uranyum
konsantrasyonlarının
α-amilaz üretimi üzerine
etkisi çalışılmıştır.
 Bunlara ilaveten bakteri hücre membran uranyum
kapasiteleri
1, 2.5 and 5 mg/L U(VI)
konsantrasyonunda sırasıyla,
32.28, 108.71 ve 254.18
mg U(VI)/ g yaş hücre membranı olarak tespit edilmiştir.
    

Kaynakça

  • Bernfeld, P., 1955, Enzymes carbohydrate metabolism, In Methods In Enzymology Academic Press, vol.17 p.149-158
  • Boyanov, M.I., Kelly, S.D., Kemner, K.M., Bunker, B.A., Fein, J.B., Fowle, D.A., 2003. Adsorption of cadmium to Bacillus subtilis bacterial cell walls: A pH-dependent X-ray absorption fine structure spectroscopy study. Geochi. et Cosmochi. Acta. 67, 3299-3311.
  • Costa, A.C.A., Duta F.P., 2001. Bioaccumulation of copper, zinc, cadmium,and lead by Bacillus sp.,Bacillus cereus, Bacillus sphaericus, and Bacillus subtilis. Braz.J. Microbiol. 32, 876-887.
  • Donmez, G., Aksu, Z., 2001. Bioaccumulation of copper (II) and nickel (II) by the non-adapted and adapted growing Candida spp. Water Res. 35, 135-142.
  • El-Helow, E.R., Sabry, S.A., Amer, R.M. 2000. Cadmium biosorption by a cadmium resistant strain of Bacillus thuringiensis: regulation and optimization of cell surface affinity for metal cations. Biometals, 13, 273–280.
  • Gazso, L.G., 2001. The Key microbial processses in the removal of toxic metals and radionuclides from the envoronment. Cejoem, 7, 178-185.
  • Gupta, R., Ahuja, P., Khan, S., Saxena, R.K., Mohapatra, H., 2000. Microbial biosorbents: Meeting challenges of heavy metal pollution in aqueous solutions. Current Science, 78: 967–973.
  • Hassen, A., Saidi. N., Cherifh, M., Boudabous, A., 1998, Effects of heavy metals on Pseudomonas aueriginosa and Bacillus thuringiensis. Bioresource Technology, 65, 73-82.
  • Hsieh, J.L., Chen, C.Y., Chang, J.S., Endo, G., Huang, C.C., 2007. Overexpression of a Single Membran Component from the Bacillus mer Operon Enhanced Mercury Resistance in an Escherichia coli Host. Biosci. Biotechnol. Biochem. 71,1494-1499.
  • Hu, Q., Qı, H., Baı, Z., Dou, M., Zeng, J., Zhang, F., Zhang, H., 2007, Biosorption of cadmium by a Cd2+ hyperresistant Bacillus cereus strain HQ-1 newly isolated from a lead and zinc mine. World J. Microbiol Biotechnol., 23, 971–976.
  • Malik, A., 2004. Metal bioremediation through growing cells. Environment International, 30, 261-278.
  • Ozdemir, S., Matpan, F., Guven, K., Baysal, Z. 2011, Production and characterization of partially purified extracellular thermostable α-amylase by Bacillus subtilis in Submerged fermentation (SmF)'', Preparative Biochemistry and Biotechnology, 41, 365-381.
  • Ozdemir, S., Kilinc, E., Poli, A., Nicolaus, B., Guven, K., 2012, Cd, Cu, Ni, Mn and Zn resistance and bioaccumulation by thermophilic bacteria. Geobacillus toebii subsp. decanicus and Geobacillus thermoleovorans subsp. stromboliensis'', World Journal of Microbiology and Biotechnology, 28, 155–163.
  • Ozdemir, S., Kilinc, E., 2012, Geobacillus thermoleovorans immobilized on Amberlite XAD-4 resin as a sorbent for solid phase extraction of uranium(VI) prior to its spectrophotometric determination, Microchimica Acta, 178, 389–397.
  • Ozdemir, S., Kilinc, E., Poli, A., Nicolaus, B., 2013, Resistance and Bioaccumulation of Cd2+, Cu2+, Co2+ and Mn2+ by thermophilic bacteria, Geobacillus thermantarticus and Anoxybacillus amylolyticus, Annals of Microbiology, 63, 1379-1385.
  • Saglam N., Cihangir N., 1995. Agır Metallerin Biyolojik Süreçlerle Biyosorbsiyonu Çalısmaları. Hacettepe Üniversitesi Egitim Fakültesi Dergisi 11: 157-161.
  • Satchanska, G., Pentcheva, E.N., Atanasova, R., Groudeva, V., Trifonova, R., Golovinsky, E. 2005, Microbial diversity in heavy-metal polluted waters. Environ Biotechnol, 19,61–67.
  • Spain, A., 2003. Implication of Microbial heavy metal tolerance in the environment. Reviews in Undergra. Res., 2, 1-6.
  • Theodorakopoulos, N., Chapon, V., Coppin, F., Floriani, M., Vercouter, T., Sergeant, C., Camilleri, V., Berthomieu, C., Février, L., 2015, Use of combined microscopic and spectroscopic techniques to reveal interactions between uranium and Microbacterium sp. A9, a strain isolated from the Chernobyl exclusion zone. J Hazard Mater. 285, 285-293.
  • Vijayaraghavan, K., Yun, Y.S., 2008. Bacterial biosorbents and biosorption. Biotechnology Advances. 26, 266–291.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Ersin Kılınç

Yayımlanma Tarihi 27 Nisan 2018
Gönderilme Tarihi 16 Aralık 2016
Yayımlandığı Sayı Yıl 2018 Cilt: 23 Sayı: 1

Kaynak Göster

APA Kılınç, E. (2018). Termofilik Exiguobacterium profundum Kullanarak Uranyum(VI) Dirençliliği ve Biyoakümülasyonu ve UV-vis Spektrofotometrik Tayini. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(1), 87-95.