Araştırma Makalesi
BibTex RIS Kaynak Göster

Characterization of Polymeric Wastes in the Hygienic Product Factory and Energy Recovery from These Wastes

Yıl 2023, Cilt: 28 Sayı: 2, 591 - 619, 31.08.2023
https://doi.org/10.53433/yyufbed.1174707

Öz

In this study, the characterization of polymeric wastes released during production in Eruslu Global group companies and the re-evaluability of these wastes were studied. For this purpose, all polymeric wastes that occur in the production of sanitary napkins, diapers, packaging film and printed packaging film, which are the basic production products of the enterprise; It was determined that it consists of polypropylene, polyethylene (LDPE, MDPE, HDPE), polystyrene, polyethylene terephthalate polymers. Considering that all wastes are not polluted, it has been evaluated that they can be reused to a large extent. In the study conducted for this purpose, it was determined that 20 different waste products emerged depending on the product variety produced in the enterprise. Thermal analysis for each waste was characterized by calorific value, FTIR, XRD, SEM and TG-DSC (TGA-DTA) techniques. It was determined that paint was added to polymeric wastes in general. In addition, it has been determined that natural micronized calcite is added to some waste in terms of environmental impact and cost reduction. This article evaluates the crystallinity, structure and surface morphology of polymeric wastes produced during production in Eruslu Global group companies. For this purpose, all polymeric waste products formed in the production of sanitary napkin, diapers, packaging film and printed packaging film, which are the primary production products of the enterprise, were characterized. 20 different waste products produced in the enterprise were selected for evaluation. Waste is rich in polystyrene, polypropylene, polyethylene (LDPE, MDPE, HDPE) and polyethylene terephthalate polymers. Each waste was characterized by FTIR, XRD, SEM, thermal analysis and calorific value techniques. As a result of the study, dye additive was detected in the structure of these wastes. When the XRD results were evaluated, it was determined that micronized calcite was added to the polymers to prevent environmental pollution caused by the paint additive. In this way, environmental pollution and production costs are reduced. Calorific values of all samples are in the range of 4292 - 10965 cal/g.

Destekleyen Kurum

İnönü Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

FLY-2018-1462

Teşekkür

We would like to thank İnönü University Scientific Research Projects Unit for their support within the scope of the project numbered FYL-2018-1462. Author Yeliz Akbulut, within the scope of YÖK 100/2000 PhD Project, by the Council of Higher Education in the sub-field of Fuels (Fossil and Bio) and Combustion; It is supported by TUBITAK with 2211-C Domestic Priority Fields Doctoral Scholarship Program.

Kaynakça

  • Achilias, D. S., Roupakias, C., Megalokonomos, P., Lappas, A. A., & Antonakou, Ε. V. (2007). Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials, 149(3), 536 - 542. doi:10.1016/j.jhazmat.2007.06.076
  • Achilias, D. S., Antonakou, E., Roupakias, C., Megalokonomos, P., & Lappas, A. (2008). Recycling techniques of polyolefins from plastic wastes. Global NEST Journal, 10(1), 114 - 122.
  • Ahrabi, A. Z., Bilici, I., & Bilgesü, A. Y. (2012). Pet atiklari kullanilarak kompozit malzeme üretiminin araştirilmasi. Journal of the Faculty of Engineering and Architecture of Gazi University, 27(3), 467 - 471.
  • Akdağ, H. (2019). Eruslu global grup firmalarındaki atık polimerlerin karakterizasyonu ve piroliz-yakma yöntemleri kullanılarak enerji üretimi fizibilitesinin hazırlanması. (M.Sc.) İnönü Üniversitesi, Fen Bilimleri Enstitüsü, Türkiye.
  • Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 29(10), 2625 - 2643. doi:10.1016/j.wasman.2009.06.004
  • Arutchelvi, J., Sudhakar, M., Arkatkar, A., Doble, M., Bhaduri, S., & Uppara, P. V. (2008). Biodegradation of polyethylene and polypropylene. Indian Journal of Biotechnology, 7(1), 9 22.
  • Asgari, P., Moradi, O., & Tajeddin, B. (2014). The effect of nanocomposite packaging carbon nanotube base on organoleptic and fungal growth of Mazafati brand dates. International Nano Letters, 4, 1 - 5. doi:10.1007/s40089-014-0098-3
  • Baechler, C., DeVuono, M., & Pearce, J. M. (2013). Distributed recycling of waste polymer into RepRap feedstock. Rapid Prototyping Journal, 19(2), 118 - 125. doi:10.1108/13552541311302978
  • Bahoria, B. V, Parbat, D. K., & Nagarnaik, P. B. (2018). XRD analysis of natural sand, quarry dust, waste plastic (ldpe) to be used as a fine aggregate in concrete. Materials Today: Proceedings, 5(1), 1432 - 1438. doi:10.1016/j.matpr.2017.11.230
  • Barrios, V. A. E., Méndez, J. R. R., Aguilar, N. V. P., Espinosa, G. A., & Rodríguez, J. L. D. (2012). FTIR-An Essential Characterization Technique for Polymeric Materials. In T. Theophanides (Ed.), Infrared Spectroscopy - Materials Science, Engineering and Technology (pp. 195-212). InTech. doi:10.5772/36044
  • Bian, L., Dong, Y., & Jiang, B. (2022). Simplified creation of polyester fabric supported Fe-based MOFs by an industrialized dyeing process: Conditions optimization, photocatalytics activity and polyvinyl alcohol removal. Journal of Environmental Sciences, 116, 52 - 67. doi:10.1016/j.jes.2021.06.007
  • Campbell, D., Pethrick, R. A., & White, J. R. (2000). Polymer Characterization: Physical Techniques. London, UK: CRC press.
  • Caro, E., & Comas, E. (2017). Polyethylene comonomer characterization by using FTIR and a multivariate classification technique. Talanta, 163, 48 - 53. doi:0.1016/j.talanta.2016.10.082
  • Chalmers, J. M., & Everall, N. J. (1999). Polymer analysis and characterization by FTIR, FTIR-microscopy, Raman spectroscopy and chemometrics. International Journal of Polymer Analysis and Characterization, 5(3), 223 - 245. doi:10.1080/10236669908009739
  • Çınar, M. E., & Kar, F. (2018). Characterization of composite produced from waste PET and marble dust. Construction and Building Materials, 163, 734 - 741. doi:10.1016/j.conbuildmat.2017.12.155
  • Costa, L. M. B., Silva, H. M. R. D., Peralta, J., & Oliveira, J. R. M. (2019). Using waste polymers as a reliable alternative for asphalt binder modification–Performance and morphological assessment. Construction and Building Materials, 198, 237 - 244. doi:10.1016/j.conbuildmat.2018.11.279
  • da Silva, D. J., & Wiebeck, H. (2020). Current options for characterizing, sorting, and recycling polymeric waste. Progress in Rubber, Plastics and Recycling Technology, 36(4), 284 - 303. doi:10.1177/1477760620918603
  • Demirkır, C., Öztürk, H., & Çolakoğlu, G. (2017). Effects of press parameters on some technological properties of polystren composite plywood. Kastamonu University Journal of Forestry Faculty, 17(3), 517 - 522. doi: 10.17475/kastorman.285645
  • Dieterich, V., Buttler, A., Hanel, A., Spliethoff, H., & Fendt, S. (2020). Power-to-liquid via synthesis of methanol, DME or Fischer–Tropsch-fuels: a review. Energy & Environmental Science, 13(10), 3207 - 3252. doi:10.1039/D0EE01187H
  • Doyle, C. D. (1961). Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Analytical Chemistry, 33(1), 77 - 79. doi:10.1021/ac60169a022
  • Duarte, G. M., & Faxina, A. L. (2021). Asphalt concrete mixtures modified with polymeric waste by the wet and dry processes: A literature review. Construction and Building Materials, 312, 125408. doi:10.1016/j.conbuildmat.2021.125408
  • Durga, G., Kalra, P., Verma, V. K., Wangdi, K., & Mishra, A. (2021). Ionic liquids: From a solvent for polymeric reactions to the monomers for poly (ionic liquids). Journal of Molecular Liquids, 335, 116540. doi:10.1016/j.molliq.2021.116540
  • El-Saftawy, A. A., Elfalaky, A., Ragheb, M. S., & Zakhary, S. G. (2014). Electron beam induced surface modifications of PET film. Radiation Physics and Chemistry, 102, 96 - 102. doi:10.1016/j.radphyschem.2014.04.025
  • Fang, J., Zhang, L., Sutton, D., Wang, X., & Lin, T. (2012). Needleless melt-electrospinning of polypropylene nanofibres. Journal of Nanomaterials, 2012, 382639. doi:10.1155/2012/382639
  • Francis, R. (2016). Recycling of Polymers: Methods, Characterization and Applications. Weinheim, Germany: Wiley-VCH Verlag GmbH &Co.
  • Ghosal, K., & Nayak, C. (2022). Recent advances in chemical recycling of polyethylene terephthalate waste into value added products for sustainable coating solutions–hope vs. hype. Materials Advances, 3(4), 1974 - 1992. doi:10.1039/D1MA01112J
  • Grigore, M. E. (2017). Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling, 2(4), 24. doi:10.3390/recycling2040024
  • Gulmine, J. V, Janissek, P. R., Heise, H. M., & Akcelrud, L. (2002). Polyethylene characterization by FTIR. Polymer Testing, 21(5), 557 - 563. doi:10.1016/S0142-9418(01)00124-6
  • Guyot, A., & Bartholin, M. (1982). Design and properties of polymers as materials for fine chemistry. Progress in Polymer Science, 8(3), 277 - 331. doi:10.1016/0079-6700(82)90002-8
  • Hamad, K., Kaseem, M., & Deri, F. (2013). Recycling of waste from polymer materials: An overview of the recent works. Polymer Degradation and Stability, 98(12), 2801 - 2812. doi:10.1016/j.polymdegradstab.2013.09.025
  • Hejna, A., Korol, J., Przybysz-Romatowska, M., Zedler, Ł., Chmielnicki, B., & Formela, K. (2020). Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers–A review. Waste Management, 108, 106 - 118. doi:10.1016/j.wasman.2020.04.032
  • Ignatyev, I. A., Thielemans, W., & Vander Beke, B. (2014). Recycling of polymers: A review. ChemSusChem, 7(6), 1579–1593. doi:10.1002/cssc.201300898
  • Kaur, B., Thakur, N., & Goswami, M. (2023). FTIR spectroscopy based identification and compatibility studies of Gamma Oryzanol with various polymers. Materials Today: Proceedings, in press. doi:10.1016/j.matpr.2023.01.164
  • Khadzhiev, S. N., Kulikova, M. V, Ivantsov, M. I., Zemtsov, L. M., Karpacheva, G. P., Muratov, D. G., Bondarenko, G. N., & Oknina, N. V. (2016). Fischer–Tropsch synthesis in the presence of nanosized iron-polymer catalysts in a fixed-bed reactor. Petroleum Chemistry, 56(6), 522 - 528. doi:10.1134/S0965544116060049
  • Khanam, P. N., & AlMaadeed, M. A. A. (2015). Processing and characterization of polyethylene-based composites. Advanced Manufacturing: Polymer & Composites Science, 1(2), 63 - 79. doi:10.1179/2055035915Y.0000000002
  • Kumar, R. (2021). Tertiary and quaternary recycling of thermoplastics by additive manufacturing approach for thermal sustainability. Materials Today: Proceedings, 37, 2382 - 2386. doi:10.1016/j.matpr.2020.08.183
  • Michell, R. M., & Müller, A. J. (2016). Confined crystallization of polymeric materials. Progress in Polymer Science, 54, 183 - 213. doi:10.1016/j.progpolymsci.2015.10.007
  • Ng, H. M., Saidi, N. M., Omar, F. S., Ramesh, K., Ramesh, S., & Bashir, S. (2018). Thermogravimetric Analysis of Polymers. Encyclopedia of Polymer Science and Technology (Ed.) (pp. 1-29). Wiley Online Library. doi:10.1002/0471440264.pst667
  • Okan, M., Aydin, H. M., & Barsbay, M. (2019). Current approaches to waste polymer utilization and minimization: a review. Journal of Chemical Technology & Biotechnology, 94(1), 8 - 21. doi:10.1002/jctb.5778
  • Özsin, G., & Pütün, A. E. (2018). A comparative study on co-pyrolysis of lignocellulosic biomass with polyethylene terephthalate, polystyrene, and polyvinyl chloride: Synergistic effects and product characteristics. Journal of Cleaner Production, 205, 1127 - 1138. doi:10.1016/j.jclepro.2018.09.134
  • Özsin, G., Kılıç, M., Apaydin-Varol, E., Pütün, A. E., & Pütün, E. (2020). A thermo-kinetic study on co-pyrolysis of oil shale and polyethylene terephthalate using TGA/FT-IR. Korean Journal of Chemical Engineering, 37, 1888 - 1898. doi:10.1007/s11814-020-0614-2
  • Paci, M., & La Mantia, F. P. (1999). Influence of small amounts of polyvinylchloride on the recycling of polyethyleneterephthalate. Polymer Degradation and Stability, 63(1), 11 - 14. doi:10.1016/S0141-3910(98)00053-6
  • Padhan, R. K., & Gupta, A. A. (2018). Preparation and evaluation of waste PET derived polyurethane polymer modified bitumen through in situ polymerization reaction. Construction and Building Materials, 158, 337 - 345. doi:10.1016/j.conbuildmat.2017.09.147
  • Pan, D., Su, F., Liu, H., Liu, C., Umar, A., Castañeda, L., …, & Guo, Z. (2021). Research progress on catalytic pyrolysis and reuse of waste plastics and petroleum sludge. ES Materials & Manufacturing, 11(6), 3 - 15. doi:10.30919/esmm5f415
  • Phakedi, D., Ude, A. U., & Oladijo, P. O. (2021). Co-pyrolysis of polymer waste and carbon-based matter as an alternative for waste management in the developing world. Journal of Analytical and Applied Pyrolysis, 155, 105077. doi:10.1016/j.jaap.2021.105077
  • Picuno, C., Alassali, A., Sundermann, M., Godosi, Z., Picuno, P., & Kuchta, K. (2020). Decontamination and recycling of agrochemical plastic packaging waste. Journal of Hazardous Materials, 381, 120965. doi:10.1016/j.jhazmat.2019.120965
  • Prime, R. B., Bair, H. E., Vyazovkin, S., Gallagher, P. K., & Riga, A. (2009). Thermogravimetric Analysis (TGA). In J. D. Menczel, & R. B. Prime (Eds.), Thermal Analysis of Polymers: Fundamentals and Applications, (pp. 241-317). Hoboken, N.J, USA: John Wiley & Sons. doi:10.1002/9780470423837.ch3
  • Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 24 - 58. doi:10.1016/j.wasman.2017.07.044
  • Raheem, A. B., Noor, Z. Z., Hassan, A., Abd Hamid, M. K., Samsudin, S. A., & Sabeen, A. H. (2019). Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review. Journal of Cleaner Production, 225, 1052 - 1064. doi:10.1016/j.jclepro.2019.04.019
  • Rajasekaran, D., & Maji, P. K. (2018). Recycling of plastic wastes with poly (ethylene-co-methacrylic acid) copolymer as compatibilizer and their conversion into high-end product. Waste Management, 74, 135 - 143. doi:10.1016/j.wasman.2018.01.018
  • Ramarad, S., Khalid, M., Ratnam, C. T., Chuah, A. L., & Rashmi, W. (2015). Waste tire rubber in polymer blends: A review on the evolution, properties and future. Progress in Materials Science, 72, 100 - 140. doi:10.1016/j.pmatsci.2015.02.004
  • Riaz, U., & Ashraf, S. M. (2014). Characterization of Polymer Blends with FTIR Spectroscopy. In S. Thomas, Y. Grohens, & P. Jyotishkumar (Eds.), Characterization of Polymer Blends, (pp. 625 678). Weinheim, Germany: Wiley‐VCH Verlag GmbH. doi:10.1002/9783527645602.ch20
  • Saleem, J., Riaz, M. A., & Gordon, M. (2018). Oil sorbents from plastic wastes and polymers: A review. Journal of Hazardous Materials, 341, 424 - 437. doi:10.1016/j.jhazmat.2017.07.072
  • Sharma, R., Joshi, H., & Jain, P. (2011). Short review on the crystallization behavior of PET/clay nanocomposites. Journal of Chemical Engineering and Materials Science, 2, 39 - 43.
  • Singh, N., Hui, D., Singh, R., Ahuja, I. P. S., Feo, L., & Fraternali, F. (2017). Recycling of plastic solid waste: A state of art review and future applications. Composites Part B: Engineering, 115, 409 - 422.doi:10.1016/j.compositesb.2016.09.013
  • Siwal, S. S., Zhang, Q., Devi, N., Saini, A. K., Saini, V., Pareek, B., Gaidukovs, S., & Thakur, V. K. (2021). Recovery processes of sustainable energy using different biomass and wastes. Renewable and Sustainable Energy Reviews, 150, 111483. doi:10.1016/j.rser.2021.111483
  • Srinivasan, S., Valsadwala, A. S., Begum, S. S., & Samui, A. B. (2021). Experimental investigation on the influence of novel catalyst in co-pyrolysis of polymeric waste: Characterization of oil and preparation of char reinforced composites. Journal of Cleaner Production, 316, 128225. doi:10.1016/j.jclepro.2021.128225
  • Suhaimi, N. A. S., Muhamad, F., Abd Razak, N. A., & Zeimaran, E. (2022). Recycling of polyethylene terephthalate wastes: A review of technologies, routes, and applications. Polymer Engineering & Science, 62(8), 2355 - 2375. doi:10.1002/pen.26017
  • Tayyar, A. E., & Üstün, S. (2010). Usage of recycled PET. Pamukkale University Journal of Engineering Sciences, 16(1), 53 - 62.
  • Tonetto, M. R., Pinto, S. C. S., Rastelli, A. de N. S., Borges, A. H., Saad, J. R. C., Pedro, F. L. M., Andrade, M. F. de, & Bandéca, M. C. (2013). Degree of conversion of polymer-matrix composite assessed by FTIR analysis. Journal of Contemporary Dental Practice, 14(1), 76 - 79. doi:10.5005/jp-journals-10024-1274
  • Tsai, T., Laio, J., & Naveen, B. (2015). Preparation and characterization of PET/LDH or clay nanocomposites through the microcompounding process. Journal of the Chinese Chemical Society, 62(6), 547–553. doi:10.1002/jccs.201400501
  • Tufan, M., Gulec, T., Çukur, U., Akbaş, S., & İmamoğlu, S. (2015). Some properties of wood plastic composites produced from waste cups. Kastamonu University Journal of Forestry Faculty, 15(2), 176-182.
  • Valerio, O., Muthuraj, R., & Codou, A. (2020). Strategies for polymer to polymer recycling from waste: Current trends and opportunities for improving the circular economy of polymers in South America. Current Opinion in Green and Sustainable Chemistry, 25, 100381. doi:10.1016/j.cogsc.2020.100381
  • Verdurmen-Noel, L., Baldo, L., & Bremmers, S. (2001). SEC–FTIR characterization of semi-crystalline HDPE and PP. Polymer, 42(13), 5523 - 5529. doi:10.1016/S0032-3861(00)00620-0
  • Woo, E. M., Sun, Y.-S., & Yang, C.-P. (2001). Polymorphism, thermal behavior, and crystal stability in syndiotactic polystyrene vs. its miscible blends. Progress in Polymer Science, 26(6), 945 - 983. doi:10.1016/S0079-6700(01)00010-7
  • Yuan, M., Hu, M., Dai, F., Fan, Y., Deng, Z., Deng, H., & Cheng, Y. (2021). Application of synthetic and natural polymers in surgical mesh for pelvic floor reconstruction. Materials & Design, 209, 109984. doi:10.1016/j.matdes.2021.109984
  • Zhuang, C.-H., Huangfu, W.-H., You, F., Wang, W., Zhu, Y.-S., & Fu, Z.-L. (2022). Evolution and mechanisms of low-temperature oxidation and coal–oxygen coupling processes of a specific low-rank bituminous coal with various microscale particle sizes. International Journal of Coal Preparation and Utilization, 43(2), 1 - 21. doi:10.1080/19392699.2022.2051010

Hijyenik Ürün Fabrikasında Oluşan Polimerik Atıkların Karakterizasyonu ve Bu Atıklardan Enerji Geri Kazanımı

Yıl 2023, Cilt: 28 Sayı: 2, 591 - 619, 31.08.2023
https://doi.org/10.53433/yyufbed.1174707

Öz

Bu çalışmada Eruslu Global grup şirketlerinde üretim sırasında açığa çıkan polimerik atıkların karakterizasyonu gerçekleştirilmiş ve bu atıkların yeniden değerlendirilebilirliği araştırılmıştır. Bu amaçla işletmenin temel üretim ürünlerinden kadın pedi, çocuk bezi, ambalaj filmi ve baskılı ambalaj filmi üretiminde meydana gelen tüm polimerik atıkların; polipropilen, polietilen (LDPE, MDPE, HDPE), polistiren, polietilen tereftalat polimerlerinden oluştuğu belirlenmiştir. Tüm atıkların kirlenmediği göz önüne alındığında büyük oranda yeniden kullanılabileceği değerlendirilmiştir. Bu amaçla yapılan çalışmada işletmede üretilen ürün çeşitliliğine bağlı olarak 20 farklı atık ürün ortaya çıktığı belirlenmiştir. Her bir atık için termal analiz, ısıl değer, FTIR, XRD ve SEM teknikleri ile karakterize edilmiştir. Polimerik atıklara genel olarak boya katkılandığı belirlenmiştir. Ayrıca çevresel etki açısından ve maliyet düşürücü olarak bazı atıklarda doğal mikronize kalsit katıldığı belirlenmiştir. Bu makalede, Eruslu Global grup şirketlerinde üretim sırasında oluşan polimerik atıkların kristalliği, yapısı ve yüzey morfolojisi değerlendirilmektedir. Bu amaçla işletmenin birincil üretim ürünleri olan hijyenik kadın pedi, çocuk bezi, ambalaj filmi ve baskılı ambalaj filmi üretiminde oluşan tüm polimerik atık ürünler karakterize edilmiştir. İşletmede üretilen 20 farklı atık ürün değerlendirilmek üzere seçilmiştir. Atık, polistiren, polipropilen, polietilen (LDPE, MDPE, HDPE) ve polietilen tereftalat polimerleri açısından zengindir. Her bir atık, FTIR, XRD, SEM, termal analiz ve ısıl değer teknikleri ile karakterize edilmiştir. Çalışma sonucunda bu atıkların yapısında boyar madde katkısı tespit edildi. XRD sonuçları değerlendirildiğinde, boya katkı maddesinin neden olduğu çevre kirliliğini önlemek için polimerlere mikronize kalsit ilave edildiği belirlendi. Bu sayede çevre kirliliği ve üretim maliyetleri azaltılmaktadır. Tüm numunelerin kalorifik değerleri 4292 - 10965 cal/g aralığındadır.

Proje Numarası

FLY-2018-1462

Kaynakça

  • Achilias, D. S., Roupakias, C., Megalokonomos, P., Lappas, A. A., & Antonakou, Ε. V. (2007). Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials, 149(3), 536 - 542. doi:10.1016/j.jhazmat.2007.06.076
  • Achilias, D. S., Antonakou, E., Roupakias, C., Megalokonomos, P., & Lappas, A. (2008). Recycling techniques of polyolefins from plastic wastes. Global NEST Journal, 10(1), 114 - 122.
  • Ahrabi, A. Z., Bilici, I., & Bilgesü, A. Y. (2012). Pet atiklari kullanilarak kompozit malzeme üretiminin araştirilmasi. Journal of the Faculty of Engineering and Architecture of Gazi University, 27(3), 467 - 471.
  • Akdağ, H. (2019). Eruslu global grup firmalarındaki atık polimerlerin karakterizasyonu ve piroliz-yakma yöntemleri kullanılarak enerji üretimi fizibilitesinin hazırlanması. (M.Sc.) İnönü Üniversitesi, Fen Bilimleri Enstitüsü, Türkiye.
  • Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 29(10), 2625 - 2643. doi:10.1016/j.wasman.2009.06.004
  • Arutchelvi, J., Sudhakar, M., Arkatkar, A., Doble, M., Bhaduri, S., & Uppara, P. V. (2008). Biodegradation of polyethylene and polypropylene. Indian Journal of Biotechnology, 7(1), 9 22.
  • Asgari, P., Moradi, O., & Tajeddin, B. (2014). The effect of nanocomposite packaging carbon nanotube base on organoleptic and fungal growth of Mazafati brand dates. International Nano Letters, 4, 1 - 5. doi:10.1007/s40089-014-0098-3
  • Baechler, C., DeVuono, M., & Pearce, J. M. (2013). Distributed recycling of waste polymer into RepRap feedstock. Rapid Prototyping Journal, 19(2), 118 - 125. doi:10.1108/13552541311302978
  • Bahoria, B. V, Parbat, D. K., & Nagarnaik, P. B. (2018). XRD analysis of natural sand, quarry dust, waste plastic (ldpe) to be used as a fine aggregate in concrete. Materials Today: Proceedings, 5(1), 1432 - 1438. doi:10.1016/j.matpr.2017.11.230
  • Barrios, V. A. E., Méndez, J. R. R., Aguilar, N. V. P., Espinosa, G. A., & Rodríguez, J. L. D. (2012). FTIR-An Essential Characterization Technique for Polymeric Materials. In T. Theophanides (Ed.), Infrared Spectroscopy - Materials Science, Engineering and Technology (pp. 195-212). InTech. doi:10.5772/36044
  • Bian, L., Dong, Y., & Jiang, B. (2022). Simplified creation of polyester fabric supported Fe-based MOFs by an industrialized dyeing process: Conditions optimization, photocatalytics activity and polyvinyl alcohol removal. Journal of Environmental Sciences, 116, 52 - 67. doi:10.1016/j.jes.2021.06.007
  • Campbell, D., Pethrick, R. A., & White, J. R. (2000). Polymer Characterization: Physical Techniques. London, UK: CRC press.
  • Caro, E., & Comas, E. (2017). Polyethylene comonomer characterization by using FTIR and a multivariate classification technique. Talanta, 163, 48 - 53. doi:0.1016/j.talanta.2016.10.082
  • Chalmers, J. M., & Everall, N. J. (1999). Polymer analysis and characterization by FTIR, FTIR-microscopy, Raman spectroscopy and chemometrics. International Journal of Polymer Analysis and Characterization, 5(3), 223 - 245. doi:10.1080/10236669908009739
  • Çınar, M. E., & Kar, F. (2018). Characterization of composite produced from waste PET and marble dust. Construction and Building Materials, 163, 734 - 741. doi:10.1016/j.conbuildmat.2017.12.155
  • Costa, L. M. B., Silva, H. M. R. D., Peralta, J., & Oliveira, J. R. M. (2019). Using waste polymers as a reliable alternative for asphalt binder modification–Performance and morphological assessment. Construction and Building Materials, 198, 237 - 244. doi:10.1016/j.conbuildmat.2018.11.279
  • da Silva, D. J., & Wiebeck, H. (2020). Current options for characterizing, sorting, and recycling polymeric waste. Progress in Rubber, Plastics and Recycling Technology, 36(4), 284 - 303. doi:10.1177/1477760620918603
  • Demirkır, C., Öztürk, H., & Çolakoğlu, G. (2017). Effects of press parameters on some technological properties of polystren composite plywood. Kastamonu University Journal of Forestry Faculty, 17(3), 517 - 522. doi: 10.17475/kastorman.285645
  • Dieterich, V., Buttler, A., Hanel, A., Spliethoff, H., & Fendt, S. (2020). Power-to-liquid via synthesis of methanol, DME or Fischer–Tropsch-fuels: a review. Energy & Environmental Science, 13(10), 3207 - 3252. doi:10.1039/D0EE01187H
  • Doyle, C. D. (1961). Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Analytical Chemistry, 33(1), 77 - 79. doi:10.1021/ac60169a022
  • Duarte, G. M., & Faxina, A. L. (2021). Asphalt concrete mixtures modified with polymeric waste by the wet and dry processes: A literature review. Construction and Building Materials, 312, 125408. doi:10.1016/j.conbuildmat.2021.125408
  • Durga, G., Kalra, P., Verma, V. K., Wangdi, K., & Mishra, A. (2021). Ionic liquids: From a solvent for polymeric reactions to the monomers for poly (ionic liquids). Journal of Molecular Liquids, 335, 116540. doi:10.1016/j.molliq.2021.116540
  • El-Saftawy, A. A., Elfalaky, A., Ragheb, M. S., & Zakhary, S. G. (2014). Electron beam induced surface modifications of PET film. Radiation Physics and Chemistry, 102, 96 - 102. doi:10.1016/j.radphyschem.2014.04.025
  • Fang, J., Zhang, L., Sutton, D., Wang, X., & Lin, T. (2012). Needleless melt-electrospinning of polypropylene nanofibres. Journal of Nanomaterials, 2012, 382639. doi:10.1155/2012/382639
  • Francis, R. (2016). Recycling of Polymers: Methods, Characterization and Applications. Weinheim, Germany: Wiley-VCH Verlag GmbH &Co.
  • Ghosal, K., & Nayak, C. (2022). Recent advances in chemical recycling of polyethylene terephthalate waste into value added products for sustainable coating solutions–hope vs. hype. Materials Advances, 3(4), 1974 - 1992. doi:10.1039/D1MA01112J
  • Grigore, M. E. (2017). Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling, 2(4), 24. doi:10.3390/recycling2040024
  • Gulmine, J. V, Janissek, P. R., Heise, H. M., & Akcelrud, L. (2002). Polyethylene characterization by FTIR. Polymer Testing, 21(5), 557 - 563. doi:10.1016/S0142-9418(01)00124-6
  • Guyot, A., & Bartholin, M. (1982). Design and properties of polymers as materials for fine chemistry. Progress in Polymer Science, 8(3), 277 - 331. doi:10.1016/0079-6700(82)90002-8
  • Hamad, K., Kaseem, M., & Deri, F. (2013). Recycling of waste from polymer materials: An overview of the recent works. Polymer Degradation and Stability, 98(12), 2801 - 2812. doi:10.1016/j.polymdegradstab.2013.09.025
  • Hejna, A., Korol, J., Przybysz-Romatowska, M., Zedler, Ł., Chmielnicki, B., & Formela, K. (2020). Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers–A review. Waste Management, 108, 106 - 118. doi:10.1016/j.wasman.2020.04.032
  • Ignatyev, I. A., Thielemans, W., & Vander Beke, B. (2014). Recycling of polymers: A review. ChemSusChem, 7(6), 1579–1593. doi:10.1002/cssc.201300898
  • Kaur, B., Thakur, N., & Goswami, M. (2023). FTIR spectroscopy based identification and compatibility studies of Gamma Oryzanol with various polymers. Materials Today: Proceedings, in press. doi:10.1016/j.matpr.2023.01.164
  • Khadzhiev, S. N., Kulikova, M. V, Ivantsov, M. I., Zemtsov, L. M., Karpacheva, G. P., Muratov, D. G., Bondarenko, G. N., & Oknina, N. V. (2016). Fischer–Tropsch synthesis in the presence of nanosized iron-polymer catalysts in a fixed-bed reactor. Petroleum Chemistry, 56(6), 522 - 528. doi:10.1134/S0965544116060049
  • Khanam, P. N., & AlMaadeed, M. A. A. (2015). Processing and characterization of polyethylene-based composites. Advanced Manufacturing: Polymer & Composites Science, 1(2), 63 - 79. doi:10.1179/2055035915Y.0000000002
  • Kumar, R. (2021). Tertiary and quaternary recycling of thermoplastics by additive manufacturing approach for thermal sustainability. Materials Today: Proceedings, 37, 2382 - 2386. doi:10.1016/j.matpr.2020.08.183
  • Michell, R. M., & Müller, A. J. (2016). Confined crystallization of polymeric materials. Progress in Polymer Science, 54, 183 - 213. doi:10.1016/j.progpolymsci.2015.10.007
  • Ng, H. M., Saidi, N. M., Omar, F. S., Ramesh, K., Ramesh, S., & Bashir, S. (2018). Thermogravimetric Analysis of Polymers. Encyclopedia of Polymer Science and Technology (Ed.) (pp. 1-29). Wiley Online Library. doi:10.1002/0471440264.pst667
  • Okan, M., Aydin, H. M., & Barsbay, M. (2019). Current approaches to waste polymer utilization and minimization: a review. Journal of Chemical Technology & Biotechnology, 94(1), 8 - 21. doi:10.1002/jctb.5778
  • Özsin, G., & Pütün, A. E. (2018). A comparative study on co-pyrolysis of lignocellulosic biomass with polyethylene terephthalate, polystyrene, and polyvinyl chloride: Synergistic effects and product characteristics. Journal of Cleaner Production, 205, 1127 - 1138. doi:10.1016/j.jclepro.2018.09.134
  • Özsin, G., Kılıç, M., Apaydin-Varol, E., Pütün, A. E., & Pütün, E. (2020). A thermo-kinetic study on co-pyrolysis of oil shale and polyethylene terephthalate using TGA/FT-IR. Korean Journal of Chemical Engineering, 37, 1888 - 1898. doi:10.1007/s11814-020-0614-2
  • Paci, M., & La Mantia, F. P. (1999). Influence of small amounts of polyvinylchloride on the recycling of polyethyleneterephthalate. Polymer Degradation and Stability, 63(1), 11 - 14. doi:10.1016/S0141-3910(98)00053-6
  • Padhan, R. K., & Gupta, A. A. (2018). Preparation and evaluation of waste PET derived polyurethane polymer modified bitumen through in situ polymerization reaction. Construction and Building Materials, 158, 337 - 345. doi:10.1016/j.conbuildmat.2017.09.147
  • Pan, D., Su, F., Liu, H., Liu, C., Umar, A., Castañeda, L., …, & Guo, Z. (2021). Research progress on catalytic pyrolysis and reuse of waste plastics and petroleum sludge. ES Materials & Manufacturing, 11(6), 3 - 15. doi:10.30919/esmm5f415
  • Phakedi, D., Ude, A. U., & Oladijo, P. O. (2021). Co-pyrolysis of polymer waste and carbon-based matter as an alternative for waste management in the developing world. Journal of Analytical and Applied Pyrolysis, 155, 105077. doi:10.1016/j.jaap.2021.105077
  • Picuno, C., Alassali, A., Sundermann, M., Godosi, Z., Picuno, P., & Kuchta, K. (2020). Decontamination and recycling of agrochemical plastic packaging waste. Journal of Hazardous Materials, 381, 120965. doi:10.1016/j.jhazmat.2019.120965
  • Prime, R. B., Bair, H. E., Vyazovkin, S., Gallagher, P. K., & Riga, A. (2009). Thermogravimetric Analysis (TGA). In J. D. Menczel, & R. B. Prime (Eds.), Thermal Analysis of Polymers: Fundamentals and Applications, (pp. 241-317). Hoboken, N.J, USA: John Wiley & Sons. doi:10.1002/9780470423837.ch3
  • Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 24 - 58. doi:10.1016/j.wasman.2017.07.044
  • Raheem, A. B., Noor, Z. Z., Hassan, A., Abd Hamid, M. K., Samsudin, S. A., & Sabeen, A. H. (2019). Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review. Journal of Cleaner Production, 225, 1052 - 1064. doi:10.1016/j.jclepro.2019.04.019
  • Rajasekaran, D., & Maji, P. K. (2018). Recycling of plastic wastes with poly (ethylene-co-methacrylic acid) copolymer as compatibilizer and their conversion into high-end product. Waste Management, 74, 135 - 143. doi:10.1016/j.wasman.2018.01.018
  • Ramarad, S., Khalid, M., Ratnam, C. T., Chuah, A. L., & Rashmi, W. (2015). Waste tire rubber in polymer blends: A review on the evolution, properties and future. Progress in Materials Science, 72, 100 - 140. doi:10.1016/j.pmatsci.2015.02.004
  • Riaz, U., & Ashraf, S. M. (2014). Characterization of Polymer Blends with FTIR Spectroscopy. In S. Thomas, Y. Grohens, & P. Jyotishkumar (Eds.), Characterization of Polymer Blends, (pp. 625 678). Weinheim, Germany: Wiley‐VCH Verlag GmbH. doi:10.1002/9783527645602.ch20
  • Saleem, J., Riaz, M. A., & Gordon, M. (2018). Oil sorbents from plastic wastes and polymers: A review. Journal of Hazardous Materials, 341, 424 - 437. doi:10.1016/j.jhazmat.2017.07.072
  • Sharma, R., Joshi, H., & Jain, P. (2011). Short review on the crystallization behavior of PET/clay nanocomposites. Journal of Chemical Engineering and Materials Science, 2, 39 - 43.
  • Singh, N., Hui, D., Singh, R., Ahuja, I. P. S., Feo, L., & Fraternali, F. (2017). Recycling of plastic solid waste: A state of art review and future applications. Composites Part B: Engineering, 115, 409 - 422.doi:10.1016/j.compositesb.2016.09.013
  • Siwal, S. S., Zhang, Q., Devi, N., Saini, A. K., Saini, V., Pareek, B., Gaidukovs, S., & Thakur, V. K. (2021). Recovery processes of sustainable energy using different biomass and wastes. Renewable and Sustainable Energy Reviews, 150, 111483. doi:10.1016/j.rser.2021.111483
  • Srinivasan, S., Valsadwala, A. S., Begum, S. S., & Samui, A. B. (2021). Experimental investigation on the influence of novel catalyst in co-pyrolysis of polymeric waste: Characterization of oil and preparation of char reinforced composites. Journal of Cleaner Production, 316, 128225. doi:10.1016/j.jclepro.2021.128225
  • Suhaimi, N. A. S., Muhamad, F., Abd Razak, N. A., & Zeimaran, E. (2022). Recycling of polyethylene terephthalate wastes: A review of technologies, routes, and applications. Polymer Engineering & Science, 62(8), 2355 - 2375. doi:10.1002/pen.26017
  • Tayyar, A. E., & Üstün, S. (2010). Usage of recycled PET. Pamukkale University Journal of Engineering Sciences, 16(1), 53 - 62.
  • Tonetto, M. R., Pinto, S. C. S., Rastelli, A. de N. S., Borges, A. H., Saad, J. R. C., Pedro, F. L. M., Andrade, M. F. de, & Bandéca, M. C. (2013). Degree of conversion of polymer-matrix composite assessed by FTIR analysis. Journal of Contemporary Dental Practice, 14(1), 76 - 79. doi:10.5005/jp-journals-10024-1274
  • Tsai, T., Laio, J., & Naveen, B. (2015). Preparation and characterization of PET/LDH or clay nanocomposites through the microcompounding process. Journal of the Chinese Chemical Society, 62(6), 547–553. doi:10.1002/jccs.201400501
  • Tufan, M., Gulec, T., Çukur, U., Akbaş, S., & İmamoğlu, S. (2015). Some properties of wood plastic composites produced from waste cups. Kastamonu University Journal of Forestry Faculty, 15(2), 176-182.
  • Valerio, O., Muthuraj, R., & Codou, A. (2020). Strategies for polymer to polymer recycling from waste: Current trends and opportunities for improving the circular economy of polymers in South America. Current Opinion in Green and Sustainable Chemistry, 25, 100381. doi:10.1016/j.cogsc.2020.100381
  • Verdurmen-Noel, L., Baldo, L., & Bremmers, S. (2001). SEC–FTIR characterization of semi-crystalline HDPE and PP. Polymer, 42(13), 5523 - 5529. doi:10.1016/S0032-3861(00)00620-0
  • Woo, E. M., Sun, Y.-S., & Yang, C.-P. (2001). Polymorphism, thermal behavior, and crystal stability in syndiotactic polystyrene vs. its miscible blends. Progress in Polymer Science, 26(6), 945 - 983. doi:10.1016/S0079-6700(01)00010-7
  • Yuan, M., Hu, M., Dai, F., Fan, Y., Deng, Z., Deng, H., & Cheng, Y. (2021). Application of synthetic and natural polymers in surgical mesh for pelvic floor reconstruction. Materials & Design, 209, 109984. doi:10.1016/j.matdes.2021.109984
  • Zhuang, C.-H., Huangfu, W.-H., You, F., Wang, W., Zhu, Y.-S., & Fu, Z.-L. (2022). Evolution and mechanisms of low-temperature oxidation and coal–oxygen coupling processes of a specific low-rank bituminous coal with various microscale particle sizes. International Journal of Coal Preparation and Utilization, 43(2), 1 - 21. doi:10.1080/19392699.2022.2051010
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Mühendislik ve Mimarlık / Engineering and Architecture
Yazarlar

Hatice Keleş 0000-0002-6762-3929

Yunus Önal 0000-0001-6342-6816

Yeliz Akbulut 0000-0002-0703-7055

Proje Numarası FLY-2018-1462
Yayımlanma Tarihi 31 Ağustos 2023
Gönderilme Tarihi 15 Eylül 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 28 Sayı: 2

Kaynak Göster

APA Keleş, H., Önal, Y., & Akbulut, Y. (2023). Characterization of Polymeric Wastes in the Hygienic Product Factory and Energy Recovery from These Wastes. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 591-619. https://doi.org/10.53433/yyufbed.1174707