Araştırma Makalesi
BibTex RIS Kaynak Göster

TiC-C İle Kaplanan AISI 1040 Çelik Yüzeyinin Aşınma Özelliklerinin İncelenmesi

Yıl 2024, Cilt: 29 Sayı: 1, 275 - 291, 30.04.2024
https://doi.org/10.53433/yyufbed.1351381

Öz

Bu çalışmada TIG (Tungsten Inert Gas) yöntemi ile AISI1040 çelik yüzeyi TiC ve farklı oranlarda (%1,2,3,4,5) C takviyeli TiC-C tozu ile kaplanmıştır. Kaplama işlemi sonrası kaplama tabakasında oluşan sert karbür fazlarının mekanik özelliklerine etkisi (sertlik, aşınma) incelenmiştir. TiC-C kaplamanın aşınma özellikleri abrasiv aşınma testi uygulanarak belirlenmiştir. Testler ASTM G99 standardına uygun şekilde yapılmıştır. Aşınma bölgesi SEM-EDX ile mikroyapı görüntüleri çekilmiştir. Tüm kaplamalarda dendrit ve ötektik yoğun bir yapı görülmüştür. Kaplama tabakasında en düşük sertlik değeri N1 (TiC) 1156 HV0,5 iken en yüksek sertlik değeri ise N6 (TiC-%5C) 1351 HV0,5 olarak ölçülmüştür. Analiz sonucunda en düşük aşınma direnci N1 numunesinden elde edilirken en yüksek aşınma direnci ise N6 numunesinden elde edilmiştir. Analiz sonuçlarında N1 numunesinde sürtünme katsayısı 0.6 iken N6 numunesinde ise 0.2 olarak elde edilmiştir. Aşınma test analiz sonuçlarında artan C oranı ile mikrosertliğin ve aşınma direncinin arttığı, ağırlık kaybının ise azaldığı belirlenmiştir.

Destekleyen Kurum

Bu proje, Batman Üniversitesi Bilimsel Araştırma Projeleri Birimi (BTÜBAP)

Proje Numarası

BTÜBAP-2022-YL-04

Teşekkür

Bu proje, Batman Üniversitesi Bilimsel Araştırma Projeleri Birimi (BTÜBAP) tarafından BTÜBAP-2022-YL-04 numaralı münferit proje kapsamında desteklenmiştir. Yapılan çalışmalara desteklerinden dolayı Batman Üniversitesi’ne teşekkür ederiz.

Kaynakça

  • Akkaş, M., & Islak, S. (2019). Microstructure, wear and corrosion properties of NiB-TiC composite materials produced by powder metallurgy method. Science of Sintering, 51(3), 327-338. doi:10.2298/SOS1903327A
  • Buytoz S. (2006). Microstructural properties of M7C3 eutectic carbides in a Fe–Cr–C alloy. Materials Letters, 60, 605-608. doi:10.1016/j.matlet.2005.09.046
  • Buytoz, S. (2020). Microstructural changes of Fe-Cr-C/M(Nb,Ti)C composite coating produced by TIG method. GU J Sci, Part C, 8(1), 51-63. doi:10.29109/gujsc.637815
  • Buytoz, S., Kilic, M., & Carboga, C. (2022). Microstructure and wear behaviour of Ni-based/TiC composite coating. International Journal of Surface Science and Engineering, 16(1), 71-90. doi:10.1504/IJSURFSE.2022.10045207
  • Cai, B., Ye-fa, T., Tu, Y, Wang, X., & Tan, H. (2011a). Tribological properties of Ni-base alloy composite coating modified by both graphite and TiC particles. Transactions Nonferrous Metals Society China, 21, 2426-2432. doi:10.1016/S1003-6326(11)61031-5
  • Cai, B., Ye-fa, T., Tu, Y., Wang, X., & Xu, T. (2011b). Effects of graphite content on microstructure and tribological properties of graphite/TiC/Ni-base alloy composite coatings. Transactions Nonferrous Metals Society China, 21, 1741-1749. doi:10.1016/S1003-6326(11)60924-2
  • Chen, L., Tianxiang, X., Haiyang, W., Peng, S., Sheng, L., Ze-Xin, W., Shujin, C., & Lai-Chang Z. (2019). Phase interaction induced texture in a plasma sprayed-remelted NiCrBSi coating during solidification: An electron backscatter diffraction study. Surface & Coatings Technology, 358, 467-480. doi:10.1016/j.surfcoat.2018.11.019
  • Çelik, Y. H., & Seçilmiş, K. (2017). Investigation of wear behaviours of Al matrix composites reinforced with different B4C rate produced by powder metallurgy method. Advanced Powder Technology, 28(9), 2218-2224. doi:10.1016/j.apt.2017.06.002
  • Demir, M. E., Çelik, Y. H., & Kalkanli, A. (2022a). The effect of rolling and aging on mechanical and tribological properties in B4C particle reinforced Al7075 matrix composites. Arabian Journal for Science and Engineering, 47(12), 16187-16208. doi:10.1007/s13369-022-06891-6
  • Demir, M. E., Çelik, Y. H., Kilickap, E., & Kalkanli, A. (2022b). The effect of B4C reinforcements on the microstructure, mechanical properties, and wear behavior of AA7075 alloy matrix produced by squeeze casting. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 237(6), 2574-2584. doi:10.1177/09544089221139095
  • Durmuş, H., Türkmen, M., & Çalıgülü, U. (2020). Farklı altlık malzemelerine uygulanan WC kaplamaların tribolojik özelliklerinin incelenmesi. Technological Applied Sciences, 15(2), 23-28.
  • Emamian, A., Corbin, S. F., & Khajepour, A. (2011). The influence of combined laser parameters on in-situ formed TiC morphology during laser cladding. Surface & Coatings Technology, 206, 124-131. doi:10.1016/j.surfcoat.2011.06.062
  • He, J., Zheng, G., Guo, F., Fu, G., Li, C., Zhao, H., …, & Yin, F. (2020). Microstructure and tribological properties of in-situ synthesized TiC reinforced reactive plasma sprayed Co-based coatings. Materials Chemistry and Physics, 248, 122913. doi:10.1016/j.matchemphys.2020.122913
  • Janicki, D. (2018). Microstructure and sliding wear behaviour of in-situ TiC-reinforced composite surface layers fabricated on ductile cast iron by laser alloying. Materials, 11(1), 75. doi:10.3390/ma11010075
  • Khalili, A., Mojtahedi, M., Goodarzi, M., & Torkamani, M. J. (2019). Synthesis of Fe-TiC hard coating from ilmenite via laser cladding. Iranian Journal of Materials Science and Engineering, 16(3), 75-86. ‎ doi:10.22068/ijmse.16.3.75
  • Kılıç, M., Beken, M., & Özdemir, N. (2019). SHS işlemi sonrası sinterleme işleminin intermetalik kaplamaya etkisinin incelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 31(1), 167-176.
  • Kılıç, M. (2021). Microstructural characterization of ni-based B4C reinforced composite coating produced by tungsten inert gas method. Arch. Metall. Mater, 66(3), 917-924. doi:10.24425/amm.2021.136398
  • Kılıç, M., Imak, A., & Kirik, I. (2021). Surface modification of AISI 304 stainless steel with NiBSi-SiC composite by TIG method. Journal of Materials Engineering and Performance, 30(2), 1411-1419. doi:10.1007/s11665-020-05378-5
  • Kılıçay, K., & Ulutan, M. (2017). Effect of cryogenic treatment on tribological behaviour of TiC composite coatings. Surface Engineering, 33(12), 886-894. doi:10.1080/02670844.2017.1317452
  • Kurt, B., Küçük, Y., & Sabri Gök, M. (2014). Microabrasion wear behavior of VC and CrC coatings deposited by thermoreactive diffusion technique. Tribology Transactions, 57(2), 345-352. doi:10.1080/10402004.2014.880538
  • Lailatul, P. H., & Maleque, M. A. (2017). Surface modification of duplex stainless steel with SiC preplacement using TIG torch cladding. Procedia Engineering, 184, 737-742. doi:10.1016/j.proeng.2017.04.151
  • Ma, Y., Wang, X., Wang, X., Yang, Y., Cui, Y., & Sun, W. (2020). In-situ TiC-Ti5Si3-SiC composite coatings prepared by plasma spraying. Surface & Coatings Technology, 404, 126484. doi:10.1016/j.surfcoat.2020.126484
  • Moghaddam, H. Z., Sharifitabar, M., & Roudini, G. (2019). Microstructure and wear properties of Fe–TiC composite coatings produced by submerged arc cladding process using ferroalloy powder mixtures. Surface and Coatings Technology, 361, 91-101. https://doi.org/10.1016/j.surfcoat.2019.01.053
  • Oh, M. C., Yeom, H., Jeon, Y., & Ahn, B. (2015). Microstructural characterization of laser heat treated AISI4140 steel with improved fatigue behavior. Arch. Metall. Mater, 60(2B), 1331-1334. doi:10.1515/amm-2015-0125
  • Ozel, S., Kurt, B., Somunkiran, I., & Orhan, N. (2008). Microstructural characteristic of NiTi coating on stainless steel by plasma transferred arc process. Surface and Coatings Technology, 202(15), 3633-3637. doi:10.1016/j.surfcoat.2008.01.006
  • Rachidi, R., El Kihel, B., & Delaunois, F. (2019). Microstructure and mechanical characterization of NiCrBSi alloy and NiCrBSi-WC composite coatings produced by flame spraying. Materials Science & Engineering B, 241, 13-21. doi:10.1016/j.mseb.2019.02.002
  • Rajkumar, K., & Aravindan, S. (2011). Tribological performance of microwave sintered copper–TiC–graphite hybrid composites. Tribology International, 44, 347-358. doi:10.1016/j.triboint.2010.11.008
  • Rao, K. V. S., Girisha, K. G., Jamuna, K., & Tejaswini, G. C. (2018). Erosion behaviour of HVOF sprayed SiC-WC-Cr3C2 multilayer coating on 304 stainless steel. Materials Today: Proceedings, 5(11), 24685-24690. doi:10.1016/j.matpr.2018.10.266
  • Rasool, G., & Stack, M. M. (2014). Wear maps for TiC composite based coatings deposited on 303 stainless steel. Tribology International, 74, 93-102. doi:10.1016/j.triboint.2014.02.002
  • Rezapoor, M., Razavi, M., Zakeri, M., Rahimipour, M. R., & Nikzad, L. (2018). Fabrication of functionally graded Fe-TiC wear resistant coating on Ck45 steel substrate by plasma spray and evaluation of mechanical properties. Ceramics International, 44(18), 22378-22386. doi:10.1016/j.ceramint.2018.09.001
  • Saba, F., Kabiri, E., Khaki, J. V., & Sabzevar, M. H. (2016). Fabrication of nanocrystalline TiC coating on AISI D2 steel substrate via high-energy mechanical alloying of Ti and C. Powder Technology, 288, 76-86. doi:10.1016/j.powtec.2015.10.030
  • Shahroozi, A., Afsari, A., Khakan, B., & Khalifeh, A.R. (2018). Microstructure and mechanical properties investigation of stellite 6 and Stellite 6/TiC coating on ASTM A105 steel produced by TIG welding process. Surface & Coatings Technology, 350, 648-658. doi:10.1016/j.surfcoat.2018.07.044
  • Tijo, D., & Masanta, M. (2018). In-situ TiC-TiB2 coating on Ti-6Al-4V alloy by tungsten inert gas (TIG) cladding method. Part-II. Mechanical performance, Surface & Coatings Technology, 344, 579-589. doi:10.1016/j.surfcoat.2018.03.083
  • Tijo, D., Waghmare, D. T., Kaladharan, D., & Masanta, M. (2018). Effect of TiC content on sliding wear behavior of TiC-Ti metal matrix composite. Materials Today: Proceedings, 5(9), 19848-19853. doi:10.1016/j.matpr.2018.06.349
  • Xiao, M., Yuanwei, Z., Yaosha, W., Zhaoguo, Q., Cheng, Z., Shiye, Z., Min, L., & Dechang, Z. (2021). Preparation, mechanical properties and enhanced wear resistance of TiC-Fe composite cermet coating. International Journal of Refractory Metals and Hard Materials, 101, 105672. doi:10.1016/j.ijrmhm.2021.105672
  • Yue, H., Lv, N., Guo, C., Zhao, L., Li, Q., Zhang, J., & Zhang, Y. (2022). Microstructure and mechanical properties of TiC/FeCrSiB coating by laser additive remanufacturing on shearer spiral blade. Surface and Coatings Technology, 431, 128043. doi:10.1016/j.surfcoat.2021.128043
  • Zabihi, A., & Soltani, R. (2018). Tribological properties of B4C reinforced aluminum composite coating produced by TIG re-melting of flame sprayed Al-Mg-B4C powder. Surface and Coatings Technology, 349, 707-718. doi:10.1016/j.surfcoat.2018.06.040
  • Zhang, H., Lian, G., Cao, Q., Pan, Y., & Zhang, Y. (2022). Microstructure and mechanical properties investigation of Ni35A–TiC composite coating deposited on AISI 1045 steel by laser cladding, The International Journal of Advanced Manufacturing Technology, 118, 1269-1282. doi:10.1007/s00170-021-08011-4
  • Zhao, Y., Yu, T., Chen, L., Chen, Y., Guan, C., & Sun, J. (2020a). Microstructure and wear resistance behavior of Ti–C–B4C-reinforced composite coating. Ceramics International, 46(16), 25136-25148. doi:10.1016/j.ceramint.2020.06.300
  • Zhao, Y., Yu, T., Sun, J., & Jiang, S. (2020b). Microstructure and properties of laser cladded B4C/TiC/Ni-based composite coating. International Journal of Refractory Metals & Hard Materials, 86, 105112. doi:10.1016/j.ijrmhm.2019.105112

Investigation of Wear Properties of AISI 1040 Steel Surface Coated with TiC-C

Yıl 2024, Cilt: 29 Sayı: 1, 275 - 291, 30.04.2024
https://doi.org/10.53433/yyufbed.1351381

Öz

In this study, 1040 steel surface was coated with TiC and C-reinforced TiC-C powder at different rates (1,2,3,4,5%) by the TIG (Tungsten Inert Gas) method. The effect of hard carbide phases formed in the coating layer after the coating process on the mechanical properties (hardness, wear) was investigated. The wear properties of the TiC-C coating were determined by applying an abrasive wear test. The tests were carried out in accordance with under ASTM G99 standard. Microstructure images of the wear zone were taken with SEM-EDX. Dendrite and eutectic showed a dense structure in all coatings. The lowest hardness value in the coating layer was N1 (TiC) 1156 HV0.5, while the highest hardness value was N6 (TiC-5%C) 1351 HV0.5. As a result of the analysis, the lowest wear resistance was obtained from sample N1, while the highest wear resistance was obtained from sample N6. As a result of the analysis, the friction coefficient was 0.6 in the N1 sample and 0.2 in the N6 sample. The wear test analysis results determined that the microhardness and wear resistance increased while the weight loss decreased with the increasing C ratio.

Proje Numarası

BTÜBAP-2022-YL-04

Kaynakça

  • Akkaş, M., & Islak, S. (2019). Microstructure, wear and corrosion properties of NiB-TiC composite materials produced by powder metallurgy method. Science of Sintering, 51(3), 327-338. doi:10.2298/SOS1903327A
  • Buytoz S. (2006). Microstructural properties of M7C3 eutectic carbides in a Fe–Cr–C alloy. Materials Letters, 60, 605-608. doi:10.1016/j.matlet.2005.09.046
  • Buytoz, S. (2020). Microstructural changes of Fe-Cr-C/M(Nb,Ti)C composite coating produced by TIG method. GU J Sci, Part C, 8(1), 51-63. doi:10.29109/gujsc.637815
  • Buytoz, S., Kilic, M., & Carboga, C. (2022). Microstructure and wear behaviour of Ni-based/TiC composite coating. International Journal of Surface Science and Engineering, 16(1), 71-90. doi:10.1504/IJSURFSE.2022.10045207
  • Cai, B., Ye-fa, T., Tu, Y, Wang, X., & Tan, H. (2011a). Tribological properties of Ni-base alloy composite coating modified by both graphite and TiC particles. Transactions Nonferrous Metals Society China, 21, 2426-2432. doi:10.1016/S1003-6326(11)61031-5
  • Cai, B., Ye-fa, T., Tu, Y., Wang, X., & Xu, T. (2011b). Effects of graphite content on microstructure and tribological properties of graphite/TiC/Ni-base alloy composite coatings. Transactions Nonferrous Metals Society China, 21, 1741-1749. doi:10.1016/S1003-6326(11)60924-2
  • Chen, L., Tianxiang, X., Haiyang, W., Peng, S., Sheng, L., Ze-Xin, W., Shujin, C., & Lai-Chang Z. (2019). Phase interaction induced texture in a plasma sprayed-remelted NiCrBSi coating during solidification: An electron backscatter diffraction study. Surface & Coatings Technology, 358, 467-480. doi:10.1016/j.surfcoat.2018.11.019
  • Çelik, Y. H., & Seçilmiş, K. (2017). Investigation of wear behaviours of Al matrix composites reinforced with different B4C rate produced by powder metallurgy method. Advanced Powder Technology, 28(9), 2218-2224. doi:10.1016/j.apt.2017.06.002
  • Demir, M. E., Çelik, Y. H., & Kalkanli, A. (2022a). The effect of rolling and aging on mechanical and tribological properties in B4C particle reinforced Al7075 matrix composites. Arabian Journal for Science and Engineering, 47(12), 16187-16208. doi:10.1007/s13369-022-06891-6
  • Demir, M. E., Çelik, Y. H., Kilickap, E., & Kalkanli, A. (2022b). The effect of B4C reinforcements on the microstructure, mechanical properties, and wear behavior of AA7075 alloy matrix produced by squeeze casting. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 237(6), 2574-2584. doi:10.1177/09544089221139095
  • Durmuş, H., Türkmen, M., & Çalıgülü, U. (2020). Farklı altlık malzemelerine uygulanan WC kaplamaların tribolojik özelliklerinin incelenmesi. Technological Applied Sciences, 15(2), 23-28.
  • Emamian, A., Corbin, S. F., & Khajepour, A. (2011). The influence of combined laser parameters on in-situ formed TiC morphology during laser cladding. Surface & Coatings Technology, 206, 124-131. doi:10.1016/j.surfcoat.2011.06.062
  • He, J., Zheng, G., Guo, F., Fu, G., Li, C., Zhao, H., …, & Yin, F. (2020). Microstructure and tribological properties of in-situ synthesized TiC reinforced reactive plasma sprayed Co-based coatings. Materials Chemistry and Physics, 248, 122913. doi:10.1016/j.matchemphys.2020.122913
  • Janicki, D. (2018). Microstructure and sliding wear behaviour of in-situ TiC-reinforced composite surface layers fabricated on ductile cast iron by laser alloying. Materials, 11(1), 75. doi:10.3390/ma11010075
  • Khalili, A., Mojtahedi, M., Goodarzi, M., & Torkamani, M. J. (2019). Synthesis of Fe-TiC hard coating from ilmenite via laser cladding. Iranian Journal of Materials Science and Engineering, 16(3), 75-86. ‎ doi:10.22068/ijmse.16.3.75
  • Kılıç, M., Beken, M., & Özdemir, N. (2019). SHS işlemi sonrası sinterleme işleminin intermetalik kaplamaya etkisinin incelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 31(1), 167-176.
  • Kılıç, M. (2021). Microstructural characterization of ni-based B4C reinforced composite coating produced by tungsten inert gas method. Arch. Metall. Mater, 66(3), 917-924. doi:10.24425/amm.2021.136398
  • Kılıç, M., Imak, A., & Kirik, I. (2021). Surface modification of AISI 304 stainless steel with NiBSi-SiC composite by TIG method. Journal of Materials Engineering and Performance, 30(2), 1411-1419. doi:10.1007/s11665-020-05378-5
  • Kılıçay, K., & Ulutan, M. (2017). Effect of cryogenic treatment on tribological behaviour of TiC composite coatings. Surface Engineering, 33(12), 886-894. doi:10.1080/02670844.2017.1317452
  • Kurt, B., Küçük, Y., & Sabri Gök, M. (2014). Microabrasion wear behavior of VC and CrC coatings deposited by thermoreactive diffusion technique. Tribology Transactions, 57(2), 345-352. doi:10.1080/10402004.2014.880538
  • Lailatul, P. H., & Maleque, M. A. (2017). Surface modification of duplex stainless steel with SiC preplacement using TIG torch cladding. Procedia Engineering, 184, 737-742. doi:10.1016/j.proeng.2017.04.151
  • Ma, Y., Wang, X., Wang, X., Yang, Y., Cui, Y., & Sun, W. (2020). In-situ TiC-Ti5Si3-SiC composite coatings prepared by plasma spraying. Surface & Coatings Technology, 404, 126484. doi:10.1016/j.surfcoat.2020.126484
  • Moghaddam, H. Z., Sharifitabar, M., & Roudini, G. (2019). Microstructure and wear properties of Fe–TiC composite coatings produced by submerged arc cladding process using ferroalloy powder mixtures. Surface and Coatings Technology, 361, 91-101. https://doi.org/10.1016/j.surfcoat.2019.01.053
  • Oh, M. C., Yeom, H., Jeon, Y., & Ahn, B. (2015). Microstructural characterization of laser heat treated AISI4140 steel with improved fatigue behavior. Arch. Metall. Mater, 60(2B), 1331-1334. doi:10.1515/amm-2015-0125
  • Ozel, S., Kurt, B., Somunkiran, I., & Orhan, N. (2008). Microstructural characteristic of NiTi coating on stainless steel by plasma transferred arc process. Surface and Coatings Technology, 202(15), 3633-3637. doi:10.1016/j.surfcoat.2008.01.006
  • Rachidi, R., El Kihel, B., & Delaunois, F. (2019). Microstructure and mechanical characterization of NiCrBSi alloy and NiCrBSi-WC composite coatings produced by flame spraying. Materials Science & Engineering B, 241, 13-21. doi:10.1016/j.mseb.2019.02.002
  • Rajkumar, K., & Aravindan, S. (2011). Tribological performance of microwave sintered copper–TiC–graphite hybrid composites. Tribology International, 44, 347-358. doi:10.1016/j.triboint.2010.11.008
  • Rao, K. V. S., Girisha, K. G., Jamuna, K., & Tejaswini, G. C. (2018). Erosion behaviour of HVOF sprayed SiC-WC-Cr3C2 multilayer coating on 304 stainless steel. Materials Today: Proceedings, 5(11), 24685-24690. doi:10.1016/j.matpr.2018.10.266
  • Rasool, G., & Stack, M. M. (2014). Wear maps for TiC composite based coatings deposited on 303 stainless steel. Tribology International, 74, 93-102. doi:10.1016/j.triboint.2014.02.002
  • Rezapoor, M., Razavi, M., Zakeri, M., Rahimipour, M. R., & Nikzad, L. (2018). Fabrication of functionally graded Fe-TiC wear resistant coating on Ck45 steel substrate by plasma spray and evaluation of mechanical properties. Ceramics International, 44(18), 22378-22386. doi:10.1016/j.ceramint.2018.09.001
  • Saba, F., Kabiri, E., Khaki, J. V., & Sabzevar, M. H. (2016). Fabrication of nanocrystalline TiC coating on AISI D2 steel substrate via high-energy mechanical alloying of Ti and C. Powder Technology, 288, 76-86. doi:10.1016/j.powtec.2015.10.030
  • Shahroozi, A., Afsari, A., Khakan, B., & Khalifeh, A.R. (2018). Microstructure and mechanical properties investigation of stellite 6 and Stellite 6/TiC coating on ASTM A105 steel produced by TIG welding process. Surface & Coatings Technology, 350, 648-658. doi:10.1016/j.surfcoat.2018.07.044
  • Tijo, D., & Masanta, M. (2018). In-situ TiC-TiB2 coating on Ti-6Al-4V alloy by tungsten inert gas (TIG) cladding method. Part-II. Mechanical performance, Surface & Coatings Technology, 344, 579-589. doi:10.1016/j.surfcoat.2018.03.083
  • Tijo, D., Waghmare, D. T., Kaladharan, D., & Masanta, M. (2018). Effect of TiC content on sliding wear behavior of TiC-Ti metal matrix composite. Materials Today: Proceedings, 5(9), 19848-19853. doi:10.1016/j.matpr.2018.06.349
  • Xiao, M., Yuanwei, Z., Yaosha, W., Zhaoguo, Q., Cheng, Z., Shiye, Z., Min, L., & Dechang, Z. (2021). Preparation, mechanical properties and enhanced wear resistance of TiC-Fe composite cermet coating. International Journal of Refractory Metals and Hard Materials, 101, 105672. doi:10.1016/j.ijrmhm.2021.105672
  • Yue, H., Lv, N., Guo, C., Zhao, L., Li, Q., Zhang, J., & Zhang, Y. (2022). Microstructure and mechanical properties of TiC/FeCrSiB coating by laser additive remanufacturing on shearer spiral blade. Surface and Coatings Technology, 431, 128043. doi:10.1016/j.surfcoat.2021.128043
  • Zabihi, A., & Soltani, R. (2018). Tribological properties of B4C reinforced aluminum composite coating produced by TIG re-melting of flame sprayed Al-Mg-B4C powder. Surface and Coatings Technology, 349, 707-718. doi:10.1016/j.surfcoat.2018.06.040
  • Zhang, H., Lian, G., Cao, Q., Pan, Y., & Zhang, Y. (2022). Microstructure and mechanical properties investigation of Ni35A–TiC composite coating deposited on AISI 1045 steel by laser cladding, The International Journal of Advanced Manufacturing Technology, 118, 1269-1282. doi:10.1007/s00170-021-08011-4
  • Zhao, Y., Yu, T., Chen, L., Chen, Y., Guan, C., & Sun, J. (2020a). Microstructure and wear resistance behavior of Ti–C–B4C-reinforced composite coating. Ceramics International, 46(16), 25136-25148. doi:10.1016/j.ceramint.2020.06.300
  • Zhao, Y., Yu, T., Sun, J., & Jiang, S. (2020b). Microstructure and properties of laser cladded B4C/TiC/Ni-based composite coating. International Journal of Refractory Metals & Hard Materials, 86, 105112. doi:10.1016/j.ijrmhm.2019.105112
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kaplama Teknolojisi
Bölüm Mühendislik ve Mimarlık / Engineering and Architecture
Yazarlar

Musa Kılıç 0000-0001-5808-6917

Serkan Gök 0000-0002-0957-9181

Oktay Adıyaman 0000-0002-2674-3836

Proje Numarası BTÜBAP-2022-YL-04
Yayımlanma Tarihi 30 Nisan 2024
Gönderilme Tarihi 28 Ağustos 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 29 Sayı: 1

Kaynak Göster

APA Kılıç, M., Gök, S., & Adıyaman, O. (2024). TiC-C İle Kaplanan AISI 1040 Çelik Yüzeyinin Aşınma Özelliklerinin İncelenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(1), 275-291. https://doi.org/10.53433/yyufbed.1351381