Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 5 Sayı: 3, 22 - 28, 01.08.2024
https://doi.org/10.55549/zbs.1520223

Öz

Kaynakça

  • Abiola, S. A., Ben-Chioma, A. E., Fidelis, B. G., Aloy, S. C. & Elekima, I. (2024). Epigenetic
  • Modulation in Breast Cancer: From Mechanisms to Therapeutic Interventions. International Research Journal of Oncology, 7(1), 1-13.
  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2015). Molecular Biology of the Cell. New York: Garland Science, Taylor and Francis Group, 4, 973-975
  • Alhmoud, J. F., Woolley, J. F., Al Moustafa, A. E. & Malki, M. I. (2020). DNA Damage/Repair Management in Cancers. Cancers (Basel), 12(4), 1050. https://doi.org/10.3390%2Fcancers12041050
  • Andreassen, P. R. & Hanenberg, H. (2019). XRCC2 (X-ray repair cross complementing 2). Atlas Genet Cytogenet Oncol Haematol, 23(1), 1-7. https://doi.org/10.4267%2F2042%2F69759
  • Byler, S., Goldgar, S., Heerboth, S., Leary, M., Housman, G., Moulton, K., & Sarkar, S. (2014). Genetic and epigenetic aspects of breast cancer progression and therapy. Anticancer research, 34(3), 1071-1077
  • Elsheikh, S. E., Green, A. R., Rakha, E. A., Powe, D. G., Ahmed, R. A., Collins, H. M., ... & Ellis, I. O. (2009). Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer research, 69(9), 3802-3809.g
  • Hridy, A., U., , S., , M., D., , M., , M., A., , M., S., , S., M., and Talha Bin Emran , T., B. (2020). Genetic Variations of RAD51 and XRCC2 Genes Increase the Risk of Colorectal Cancer in Bangladeshi Population. Asian Pac J Cancer Prev. 21(5): 1445–1451, doi: 10.31557/APJCP.2020.21.5.1445
  • Howlader, N. N. A. K. M., Noone, A. M., Krapcho, M., Garshell, J., Neyman, N., et.al (2019). Inherited variants in XRCC2 and the risk of breast cancer. Breast Cancer Research and Treatment, 178(3), 657-663. https://doi.org/10.1007/s10549-019-05415-5
  • Liu, Q., Peng, Q., Zhang, B. & Tan, Y. (2023). X-ray cross-complementing family: the bridge linking DNA damage repair and cancer. J Transl Med, 21(1), 602. https://doi.org/10.1186%2Fs12967-023-04447-2
  • Malone, E. R., Oliva, M., Sabatini, P. J. B., Stockley, T. L. & Siu, L. L. (2020). Molecular profiling for precision cancer therapies. Genome Medicine, 12(1), 8. https://doi.org/10.1186/s13073-019-0703-1
  • Moon, J., Kitty, I., Renata, K., Qin, S., Zhao, F. & Kim, W. (2023). DNA Damage and Its Role in Cancer Therapeutics. International Journal of Molecular Sciences, 24(5), 4741. https://doi.org/10.3390/ijms24054741
  • Paulíková, s., Chmelařová2, M., J. Petera1, M., Palička,V., Paulík, M. (2013). Hypermethylation of RAD51L3 and XRCC2 Genes to Predict Late Toxicity in Chemoradiotherapy-Treated Cervical Cancer Patients. Folia Biologica (Praha) 59, 240-245
  • Rodenhiser, D. I., Andrews, J., Kennette, W., Sadikovic, B., Mendlowitz, A., Tuck, A. B., & Chambers, A. F. (2008). Epigenetic mapping and functional analysis in a breast cancer metastasis model using whole-genome promoter tiling microarrays. Breast cancer research, 10, 1-15.
  • Shi, Y., Shen, M., Xu, M., Tao, M., Chen, K. & Zhu, Q. (2022). Comprehensive Analysis of the Expression and Prognosis for RAD51 Family in Human Breast Cancer. Int J Gen Med, 15(4925-4936. https://doi.org/10.2147%2FIJGM.S350971
  • Wilkinson, L. & Gathani, T. (2022). Understanding breast cancer as a global health concern. Br J Radiol, 95(1130), 20211033. https://doi.org/10.1259%2Fbjr.20211033
  • Yu, J. & Wang, C. G. (2023a). Relationship between polymorphisms in homologous recombination repair genes RAD51 G172T、XRCC2 & XRCC3 and risk of breast cancer: A meta-analysis. Front Oncol, 13(1), 1047336. https://doi.org/10.3389%2Ffonc.2023.1047336

Evaluation of XRCC2 gene`s methylation pattern in Breast Cancer

Yıl 2024, Cilt: 5 Sayı: 3, 22 - 28, 01.08.2024
https://doi.org/10.55549/zbs.1520223

Öz

Breast cancer (BC) is a leading cause of morbidity and mortality among women, with its development influenced by genetic factors such as mutations in the XRCC2 gene, a key player in DNA repair via homologous recombination. This study aimed to analyze XRCC2 methylation rate in promotor region in BC tissues as epigenetic factor and compared to normal breast tissues to elucidate its potential role in BC pathogenesis. An observational analytical study with a case-control design was conducted at Zheen International Hospital, Erbil, Iraq, from 2021 to 2024. The study included 44 adult women diagnosed with BC. The X-ray repair cross-complementing group 2 (XRCC2) gene encodes a member of the RecA/Rad51-related protein family that participates in homologous recombination to maintain chromosome stability and repair DNA damage. This gene is involved in the repair of DNA double-strand breaks by homologous recombination and it functionally complements Chinese hamster irs1, a repair-deficient mutant that exhibits hypersensitivity to several different DNA-damaging agents. In this study methylation status was determined using methylation-sensitive restriction enzyme digestion PCR. The XRCC2 promoter region underwent DNA methylation analysis via Methylation-sensitive restriction enzyme digestion PCR (MSRE-PCR). This involved digesting genomic DNA with a specific enzyme sensitive to methylation, followed by PCR amplification using gene-specific primers. The current study found a 7% methylation rate for the XRCC2 gene in tumor tissue, with no indication of methylation in the XRCC2 promoter region, suggesting limited regulation by methylation. further analysis is mandatory to better understand and confirm our preliminary findings.

Kaynakça

  • Abiola, S. A., Ben-Chioma, A. E., Fidelis, B. G., Aloy, S. C. & Elekima, I. (2024). Epigenetic
  • Modulation in Breast Cancer: From Mechanisms to Therapeutic Interventions. International Research Journal of Oncology, 7(1), 1-13.
  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2015). Molecular Biology of the Cell. New York: Garland Science, Taylor and Francis Group, 4, 973-975
  • Alhmoud, J. F., Woolley, J. F., Al Moustafa, A. E. & Malki, M. I. (2020). DNA Damage/Repair Management in Cancers. Cancers (Basel), 12(4), 1050. https://doi.org/10.3390%2Fcancers12041050
  • Andreassen, P. R. & Hanenberg, H. (2019). XRCC2 (X-ray repair cross complementing 2). Atlas Genet Cytogenet Oncol Haematol, 23(1), 1-7. https://doi.org/10.4267%2F2042%2F69759
  • Byler, S., Goldgar, S., Heerboth, S., Leary, M., Housman, G., Moulton, K., & Sarkar, S. (2014). Genetic and epigenetic aspects of breast cancer progression and therapy. Anticancer research, 34(3), 1071-1077
  • Elsheikh, S. E., Green, A. R., Rakha, E. A., Powe, D. G., Ahmed, R. A., Collins, H. M., ... & Ellis, I. O. (2009). Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer research, 69(9), 3802-3809.g
  • Hridy, A., U., , S., , M., D., , M., , M., A., , M., S., , S., M., and Talha Bin Emran , T., B. (2020). Genetic Variations of RAD51 and XRCC2 Genes Increase the Risk of Colorectal Cancer in Bangladeshi Population. Asian Pac J Cancer Prev. 21(5): 1445–1451, doi: 10.31557/APJCP.2020.21.5.1445
  • Howlader, N. N. A. K. M., Noone, A. M., Krapcho, M., Garshell, J., Neyman, N., et.al (2019). Inherited variants in XRCC2 and the risk of breast cancer. Breast Cancer Research and Treatment, 178(3), 657-663. https://doi.org/10.1007/s10549-019-05415-5
  • Liu, Q., Peng, Q., Zhang, B. & Tan, Y. (2023). X-ray cross-complementing family: the bridge linking DNA damage repair and cancer. J Transl Med, 21(1), 602. https://doi.org/10.1186%2Fs12967-023-04447-2
  • Malone, E. R., Oliva, M., Sabatini, P. J. B., Stockley, T. L. & Siu, L. L. (2020). Molecular profiling for precision cancer therapies. Genome Medicine, 12(1), 8. https://doi.org/10.1186/s13073-019-0703-1
  • Moon, J., Kitty, I., Renata, K., Qin, S., Zhao, F. & Kim, W. (2023). DNA Damage and Its Role in Cancer Therapeutics. International Journal of Molecular Sciences, 24(5), 4741. https://doi.org/10.3390/ijms24054741
  • Paulíková, s., Chmelařová2, M., J. Petera1, M., Palička,V., Paulík, M. (2013). Hypermethylation of RAD51L3 and XRCC2 Genes to Predict Late Toxicity in Chemoradiotherapy-Treated Cervical Cancer Patients. Folia Biologica (Praha) 59, 240-245
  • Rodenhiser, D. I., Andrews, J., Kennette, W., Sadikovic, B., Mendlowitz, A., Tuck, A. B., & Chambers, A. F. (2008). Epigenetic mapping and functional analysis in a breast cancer metastasis model using whole-genome promoter tiling microarrays. Breast cancer research, 10, 1-15.
  • Shi, Y., Shen, M., Xu, M., Tao, M., Chen, K. & Zhu, Q. (2022). Comprehensive Analysis of the Expression and Prognosis for RAD51 Family in Human Breast Cancer. Int J Gen Med, 15(4925-4936. https://doi.org/10.2147%2FIJGM.S350971
  • Wilkinson, L. & Gathani, T. (2022). Understanding breast cancer as a global health concern. Br J Radiol, 95(1130), 20211033. https://doi.org/10.1259%2Fbjr.20211033
  • Yu, J. & Wang, C. G. (2023a). Relationship between polymorphisms in homologous recombination repair genes RAD51 G172T、XRCC2 & XRCC3 and risk of breast cancer: A meta-analysis. Front Oncol, 13(1), 1047336. https://doi.org/10.3389%2Ffonc.2023.1047336
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Genetik (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Naser Gilani

Mehmet Özaslan

Yayımlanma Tarihi 1 Ağustos 2024
Gönderilme Tarihi 10 Temmuz 2024
Kabul Tarihi 21 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 3

Kaynak Göster

EndNote Gilani N, Özaslan M (01 Ağustos 2024) Evaluation of XRCC2 gene`s methylation pattern in Breast Cancer. Zeugma Biological Science 5 3 22–28.