Araştırma Makalesi
BibTex RIS Kaynak Göster

Şeftali yaprağındaki kortikal hücrelerin, ksilem damarların ve klorofil biyosentezin asetilsalisilik asit ve sodyum nitroprussid ile iyileştirilmesi

Yıl 2022, , 409 - 417, 30.09.2022
https://doi.org/10.20289/zfdergi.1037526

Öz

Amaç: Bitki büyümesi ve gelişmesi için su ve besin maddeleri gereklidir. Su ve besin maddelerinin köklerden sürgünlere taşınması ksilem demetinde gerçekleşir. Asetilsalisilik asit (ASA) ve sodyum nitroprussid (SNP), bitki büyüme düzenlenmesinde önemli roller oynamaktadır. Ancak SNP ile ASA ve yaprak anatomisi arasındaki ilişki hakkında sınırlı bilgi bilinmektedir. Bu nedenle, bu çalışma, ASA ve SNP’ nin şeftalide yaprak korteks ve ksilem anatomisini ve klorofil biyosentezini iyileştirme üzerine olan hipotezi değerlendirmek için yapılmıştır.
Materyal ve Yöntem: Çalışmada iki yaşında olan ve GF 677 üzerine aşılanmış Rich May şeftalinin (Prunus persica (L.) Batsch) kökleri sulama yoluyla 1 mM SNP ve 1 mM ASA (kontrol hariç) ile uygulanmıştır. Uygulamalardan bir ay sonra, yapraklarda birçok histolojik tepki ve klorofil biyosentezi değerlendirilmiştir.
Araştırma Bulguları: Her iki uygulama da kontrole kıyasla stoma iletkenliğini yükseltmiştir. Klorofil biyosentezi uygulamalardan etkilenmiştir. SNP ve ASA, kontrole kıyasla klorofil öncülerinin konsantrasyonlarını arttırmıştır. ASA, korteks hücre tabakasının sayısını artırarak korteks kalınlığını arttırmıştır. Böylece, ASA yaprak hücre bölünmesini etkileyebilir. Ayrıca, SNP ve ASA ksilem demetini genişletmiştir.
Sonuç: Ksilem demetindeki iyileşme, stres koşulları altındaki bitkilere yardımcı olabilir. Bu nedenle, besin ve su alımını iyileştirmek için SNP ve ASA kullanılabilir.

Kaynakça

  • Aras, S. & A. Eşitken, 2019a. Dry Matter Partitioning and Salt Tolerance via Salicylic Acid Treatment in Strawberry Plant Under Salt Stress. Journal of Agriculture and Nature, 22 (2): 337-341.
  • Aras, S. & A. Eşitken, 2019b. Responses of Apple Plants to Salinity Stress. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29 (2): 253-257.
  • Aras, S., 2021. Determination of xylem water flow velocity of some Prunus shoots by dye infusion technique. Harran Tarım ve Gıda Bilimleri Dergisi, 25 (3): 287-292.
  • Aras, S., H. Keles & A. Eşitken, 2020. SNP mitigates malignant salt effects on apple plants. Erwerbs-Obstbau, 62 (1): 107-115.
  • Aras, S., H. Keles & E. Bozkurt, 2021. Physiological and histological responses of peach plants grafted onto different rootstocks under calcium deficiency conditions. Scientia Horticulturae, 281 (1): 109967.
  • Bauerle, T. L., M. Centinari & W. L. Bauerle, 2011. Shifts in xylem vessel diameter and embolisms in grafted apple trees of differing rootstock growth potential in response to drought. Planta, 234 (5): 1045-1054.
  • Boerjan, W., J. Ralph & M. Baucher, 2003. Lignin biosynthesis. Annual Review of Plant Biology, 54 (1): 519-546.
  • Bondada, B. R., M. A. Matthews & K. A. Shackel, 2005. Functional xylem in the post-veraison grape berry. Journal of Experimental Botany, 56 (421): 2949-2957.
  • Brodersen, C. R., A. B. Roddy, J. W. Wason & A. J. McElrone, 2019. Functional status of xylem through time. Annual Review of Plant Biology, 70 (1): 407-433.
  • Canakci, S. & O. Munzuroğlu, 2007. Effects of acetylsalicylic acid on germination, growth and chlorophyll amounts of cucumber (Cucumis sativus L.) seeds. Pakistan Journal of Biological Sciences, 10 (17): 2930-2934.
  • Candar, S., T. Alço, M. Ekiz, İ. Korkutal & E. Bahar, 2020. The Effect of Pruning Type and Abiotic Factors on Physiological Activities in Some Local Wine Grapes Selected from National Collection Vineyard. Ege Üniversitesi Ziraat Fakültesi Dergisi, 57 (2):173-183.
  • Chen, Z., S. Iyer, A. Caplan, D. F. Klessig & B. Fan, 1997. Differential accumulation of salicylic acid and salicylic acid sensitive catalase in different rice tissues. Plant Physiology, 114 (1): 193-201.
  • da Silva, N. R., J. B. Florindo, M. C. Gómez, D. R. Rossatto, R. M. Kolb & O. M. Bruno, 2015. Plant identification based on leaf midrib cross-section images using fractal descriptors. PloS one, 10 (6): e0130014.
  • Dolatabadian, A., S. A. M. Modarres Sanavy & M. Sharifi, 2009. Effect of salicylic acid and salt on wheat seed germination. Acta Agriculturae Scandinavica, Section B -Soil and Plant Science, 59 (5): 456-464.
  • Filippou, P., C. Antoniou, S. Yelamanchili & V. Fotopoulos, 2012. NO loading: efficiency assessment of five commonly used application methods of sodium nitroprusside in Medicago truncatula plants. Plant Physiology and Biochemistry, 60 (1):115-118.
  • Gabaldón, C., L. V. Gómez Ros, M. A. Pedreño & A. Ros Barceló, 2005. Nitric oxide production by the differentiating xylem of Zinnia elegans. New Phytologist, 165 (1): 121-130.
  • Giménez, M. J., J. M. Valverde, D. Valero, F. Guillén, D. Martínez-Romero, M. Serrano & S. Castillo, 2014. Quality and antioxidant properties on sweet cherries as affected by preharvest salicylic and acetylsalicylic acids treatments. Food Chemistry, 160 (1): 226-232.
  • Goicoechea, M., E. Lacombe, S. Legay, S. Mihaljevic, P. Rech, A. Jauneau, C. Lapierre, B. Pollet, D. Verhaegen, N. Chaubet-Gigot & J. Grima‐Pettenati, 2005. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant Journal, 43 (4): 553-567.
  • Gonzalez N., H. Vanhaeren & D. Inzé, 2012. Leaf size control: complex coordination of cell division and expansion. Trends in Plant Science, 17 (6): 332-340.
  • Grimm, E., D. Pflugfelder, D. van Dusschoten, A. Winkler & M. Knoche, 2017. Physical rupture of the xylem in developing sweet cherry fruit causes progressive decline in xylem sap inflow rate. Planta, 246 (4): 659-672.
  • Guo, A., Y. Hu, M. Shi, H. Wang, Y. Wu & Y. Wang, 2020. Effects of iron deficiency and exogenous sucrose on the intermediates of chlorophyll biosynthesis in Malus halliana. PloS one, 15 (5): e0232694.
  • Hoagland, D. R. & D. I. Arnon, 1950. The water-culture method for growing plants without soil. Circular. Agricultural Experiment Station, University of California, Berkeley, 347 pp
  • Hodgins, R. R. & R. B. Van Huystee, 1986. Rapid simultaneous estimation of protoporphyrin and Mg-porphyrins in higher plants. Journal of Plant Physiology, 125 (3-4): 311-323.
  • Jetter, R. & S. Schaffer, 2001. Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiology, 126 (4): 1725-1737.
  • Kováčik, J., J. Grúz, M. Bačkor, M. Strnad & M. Repčák, 2009. Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Reports, 28 (1): 135-143.
  • Lechthaler, S., P. Colangeli, M. Gazzabin & T. Anfodillo, 2019. Axial anatomy of the leaf midrib provides new insights into the hydraulic architecture and cavitation patterns of Acer pseudoplatanus leaves. Journal of Experimental Botany, 70 (21): 6195-6201.
  • Lefevere, H., L. Bauters & G. Gheysen, 2020. Salicylic acid biosynthesis in plants. Frontiers in Plant Science, 11 (1): 338.
  • Liu, J., J. Wang, X. Yao, Y. Zhang, J. Li, X. Wang, Z. Xu & W. Chen, 2015. Characterization and fine mapping of thermo-sensitive chlorophyll deficit mutant1 in rice (Oryza sativa L.). Breeding Science, 65 (2): 161-169.
  • Liu, S., Y. Dong, L. Xu & J. Kong, 2014. Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regulation, 73 (1): 67-78.
  • Lotfi, R., K. Ghassemi-Golezani & M. Pessarakli, 2020. Salicylic acid regulates photosynthetic electron transfer and stomatal conductance of mung bean (Vigna radiata L.) under salinity stress. Biocatalysis and Agricultural Biotechnology, 26 (1): 101635.
  • Miqueloto, A., C. V. T. Amarante, C. A. Steffens, A. Santos & E. Mitcham, 2014. Relationship between xylem functionality, calcium content and the incidence of bitter pit in apple fruit. Scientia Horticulturae, 165 (1): 319-323.
  • Mohamed, I. A., N. Shalby, A. M. A. El-Badri, M. H. Saleem, M. N. Khan, A. Nawaz, M. M. Qin, R. A. Agami, J. Kuai, B. Wang & G. Zhou, 2020. Stomata and xylem vessels traits improved by melatonin application contribute to enhancing salt tolerance and fatty acid composition of Brassica napus L. plants. Agronomy, 10 (8): 1186.
  • Monzón, G. C., M. Pinedo, J. Di Rienzo, E. Novo-Uzal, F. Pomar, L. Lamattina & L. de la Canal, 2014. Nitric oxide is required for determining root architecture and lignin composition in sunflower. Supporting evidence from microarray analyses. Nitric Oxide, 39 (1): 20-28.
  • Orłowska, E., W. Przybyłowicz, D. Orlowski, N. P. Mongwaketsi, K. Turnau & J. Mesjasz-Przybyłowicz, 2013. Mycorrhizal colonization affects the elemental distribution in roots of Ni-hyperaccumulator Berkheya coddii Roessler. Environmental Pollution, 175 (1): 100-109.
  • Pedroso, M. C. & D. J. Durzan, 2000. Effect of different gravity environments on DNA fragmentation and cell death in Kalanchoe leaves. Annals of Botany, 86 (1): 983-994.
  • Porra, R. J., W. A. Thompson & P. E. Kriedemann, 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta, 975: 384-394.
  • Roberts, K. & M. C. McCann, 2000. Xylogenesis: the birth of a corpse. Current Opinion in Plant Biology, 3 (6): 517-522.
  • Shakirova, F. M., A. R. Sakhabutdinova, M. V. Bezrukova, R. A. Fatkhutdinova & D. R. Fatkhutdinova, 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science, 164 (3): 317-322.
  • Takahashi, S. & H. Yamasaki, 2002. Reversible inhibition of photophosphorylation in chloroplasts by nitric oxide. FEBS Letters, 512 (1-3): 145-148.
  • Tanaka, R. & A. Tanaka, 2007. Tetrapyrrole biosynthesis in higher plants. Annual Review of Plant Biology, 58 (1): 321-346.
  • Wang, B., Z. Li, Z. Han, S. Xue, Y. Bi & D. Prusky, 2021. Effects of nitric oxide treatment on lignin biosynthesis and texture properties at wound sites of muskmelons. Food Chemistry, 362 (1): 130193.
  • Wang, G. L., F. Que, Z. S. Xu, F. Wang & A. S. Xiong, (2017). Exogenous gibberellin enhances secondary xylem development and lignification in carrot taproot. Protoplasma, 254 (2): 839-848.
  • Whetten, R. W., J. J. MacKay & R. R. Sederoff, 1998. Recent advances in understanding lignin biosynthesis. Annual Review of Plant Biology, 49 (1): 585-609.
  • White, P. J., 2012. “Long-Distance Transport in the Xylem and Phloem, 49-70”. In: Marschner's Mineral Nutrition of Higher Plants (Ed. P. Marschner). Academic Press, 651 pp.
  • Zeisler, V. & L. Schreiber, 2016. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier. Planta, 243 (1): 65-81.
  • Zhu, K., F. Yuan, A. Wang, H. Yang, D. Guan, C. Jin, H. Zhang, Y. Zhang & J. Wu, 2019. Effects of soil rewatering on mesophyll and stomatal conductance and the associated mechanisms involving leaf anatomy and some physiological activities in Manchurian ash and Mongolian oak in the Changbai Mountains. Plant Physiology and Biochemistry, 144 (1): 22-34.

Cortical cells, xylem vessels, and chlorophyll biosynthesis improved by acetylsalicylic acid and sodium nitroprusside in peach leaves

Yıl 2022, , 409 - 417, 30.09.2022
https://doi.org/10.20289/zfdergi.1037526

Öz

Objective: Water and nutrients are required for plant growth and development. Transport of water and nutrients from the roots to the shoots occurs in the xylem vessel. Acetylsalicylic acid (ASA) and sodium nitroprusside (SNP) play important roles in plant growth regulation. However, limited information is known about the relationship between SNP and ASA and leaf anatomy. Therefore, the current study was performed to evaluate the hypothesis that ASA and SNP improve leaf cortex and xylem anatomy and chlorophyll biosynthesis in peach.
Material and Methods: In the study, the roots of two-year-old peach (Prunus persica (L.) Batsch) cv. Rich May grafted onto GF 677 were treated with 1 mM SNP and 1 mM ASA (except control) through irrigation. One month after the treatments, many leaf histological responses and chlorophyll biosynthesis were evaluated.
Results: Both treatments increased stomatal conductance compared to control. Chlorophyll biosynthesis was influenced by the treatments. SNP and ASA increased the concentrations of the chlorophyll precursors compared to control. ASA increased cortex thickness by increasing the number of cortex cell layers. Thus, ASA can affect leaf cell division. Furthermore, SNP and ASA can enhance xylem conduits width.
Conclusion: Improvement in xylem conduits may help plants under stress conditions. Therefore, SNP and ASA may be used to improve nutrient and water uptake.

Kaynakça

  • Aras, S. & A. Eşitken, 2019a. Dry Matter Partitioning and Salt Tolerance via Salicylic Acid Treatment in Strawberry Plant Under Salt Stress. Journal of Agriculture and Nature, 22 (2): 337-341.
  • Aras, S. & A. Eşitken, 2019b. Responses of Apple Plants to Salinity Stress. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29 (2): 253-257.
  • Aras, S., 2021. Determination of xylem water flow velocity of some Prunus shoots by dye infusion technique. Harran Tarım ve Gıda Bilimleri Dergisi, 25 (3): 287-292.
  • Aras, S., H. Keles & A. Eşitken, 2020. SNP mitigates malignant salt effects on apple plants. Erwerbs-Obstbau, 62 (1): 107-115.
  • Aras, S., H. Keles & E. Bozkurt, 2021. Physiological and histological responses of peach plants grafted onto different rootstocks under calcium deficiency conditions. Scientia Horticulturae, 281 (1): 109967.
  • Bauerle, T. L., M. Centinari & W. L. Bauerle, 2011. Shifts in xylem vessel diameter and embolisms in grafted apple trees of differing rootstock growth potential in response to drought. Planta, 234 (5): 1045-1054.
  • Boerjan, W., J. Ralph & M. Baucher, 2003. Lignin biosynthesis. Annual Review of Plant Biology, 54 (1): 519-546.
  • Bondada, B. R., M. A. Matthews & K. A. Shackel, 2005. Functional xylem in the post-veraison grape berry. Journal of Experimental Botany, 56 (421): 2949-2957.
  • Brodersen, C. R., A. B. Roddy, J. W. Wason & A. J. McElrone, 2019. Functional status of xylem through time. Annual Review of Plant Biology, 70 (1): 407-433.
  • Canakci, S. & O. Munzuroğlu, 2007. Effects of acetylsalicylic acid on germination, growth and chlorophyll amounts of cucumber (Cucumis sativus L.) seeds. Pakistan Journal of Biological Sciences, 10 (17): 2930-2934.
  • Candar, S., T. Alço, M. Ekiz, İ. Korkutal & E. Bahar, 2020. The Effect of Pruning Type and Abiotic Factors on Physiological Activities in Some Local Wine Grapes Selected from National Collection Vineyard. Ege Üniversitesi Ziraat Fakültesi Dergisi, 57 (2):173-183.
  • Chen, Z., S. Iyer, A. Caplan, D. F. Klessig & B. Fan, 1997. Differential accumulation of salicylic acid and salicylic acid sensitive catalase in different rice tissues. Plant Physiology, 114 (1): 193-201.
  • da Silva, N. R., J. B. Florindo, M. C. Gómez, D. R. Rossatto, R. M. Kolb & O. M. Bruno, 2015. Plant identification based on leaf midrib cross-section images using fractal descriptors. PloS one, 10 (6): e0130014.
  • Dolatabadian, A., S. A. M. Modarres Sanavy & M. Sharifi, 2009. Effect of salicylic acid and salt on wheat seed germination. Acta Agriculturae Scandinavica, Section B -Soil and Plant Science, 59 (5): 456-464.
  • Filippou, P., C. Antoniou, S. Yelamanchili & V. Fotopoulos, 2012. NO loading: efficiency assessment of five commonly used application methods of sodium nitroprusside in Medicago truncatula plants. Plant Physiology and Biochemistry, 60 (1):115-118.
  • Gabaldón, C., L. V. Gómez Ros, M. A. Pedreño & A. Ros Barceló, 2005. Nitric oxide production by the differentiating xylem of Zinnia elegans. New Phytologist, 165 (1): 121-130.
  • Giménez, M. J., J. M. Valverde, D. Valero, F. Guillén, D. Martínez-Romero, M. Serrano & S. Castillo, 2014. Quality and antioxidant properties on sweet cherries as affected by preharvest salicylic and acetylsalicylic acids treatments. Food Chemistry, 160 (1): 226-232.
  • Goicoechea, M., E. Lacombe, S. Legay, S. Mihaljevic, P. Rech, A. Jauneau, C. Lapierre, B. Pollet, D. Verhaegen, N. Chaubet-Gigot & J. Grima‐Pettenati, 2005. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant Journal, 43 (4): 553-567.
  • Gonzalez N., H. Vanhaeren & D. Inzé, 2012. Leaf size control: complex coordination of cell division and expansion. Trends in Plant Science, 17 (6): 332-340.
  • Grimm, E., D. Pflugfelder, D. van Dusschoten, A. Winkler & M. Knoche, 2017. Physical rupture of the xylem in developing sweet cherry fruit causes progressive decline in xylem sap inflow rate. Planta, 246 (4): 659-672.
  • Guo, A., Y. Hu, M. Shi, H. Wang, Y. Wu & Y. Wang, 2020. Effects of iron deficiency and exogenous sucrose on the intermediates of chlorophyll biosynthesis in Malus halliana. PloS one, 15 (5): e0232694.
  • Hoagland, D. R. & D. I. Arnon, 1950. The water-culture method for growing plants without soil. Circular. Agricultural Experiment Station, University of California, Berkeley, 347 pp
  • Hodgins, R. R. & R. B. Van Huystee, 1986. Rapid simultaneous estimation of protoporphyrin and Mg-porphyrins in higher plants. Journal of Plant Physiology, 125 (3-4): 311-323.
  • Jetter, R. & S. Schaffer, 2001. Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiology, 126 (4): 1725-1737.
  • Kováčik, J., J. Grúz, M. Bačkor, M. Strnad & M. Repčák, 2009. Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Reports, 28 (1): 135-143.
  • Lechthaler, S., P. Colangeli, M. Gazzabin & T. Anfodillo, 2019. Axial anatomy of the leaf midrib provides new insights into the hydraulic architecture and cavitation patterns of Acer pseudoplatanus leaves. Journal of Experimental Botany, 70 (21): 6195-6201.
  • Lefevere, H., L. Bauters & G. Gheysen, 2020. Salicylic acid biosynthesis in plants. Frontiers in Plant Science, 11 (1): 338.
  • Liu, J., J. Wang, X. Yao, Y. Zhang, J. Li, X. Wang, Z. Xu & W. Chen, 2015. Characterization and fine mapping of thermo-sensitive chlorophyll deficit mutant1 in rice (Oryza sativa L.). Breeding Science, 65 (2): 161-169.
  • Liu, S., Y. Dong, L. Xu & J. Kong, 2014. Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regulation, 73 (1): 67-78.
  • Lotfi, R., K. Ghassemi-Golezani & M. Pessarakli, 2020. Salicylic acid regulates photosynthetic electron transfer and stomatal conductance of mung bean (Vigna radiata L.) under salinity stress. Biocatalysis and Agricultural Biotechnology, 26 (1): 101635.
  • Miqueloto, A., C. V. T. Amarante, C. A. Steffens, A. Santos & E. Mitcham, 2014. Relationship between xylem functionality, calcium content and the incidence of bitter pit in apple fruit. Scientia Horticulturae, 165 (1): 319-323.
  • Mohamed, I. A., N. Shalby, A. M. A. El-Badri, M. H. Saleem, M. N. Khan, A. Nawaz, M. M. Qin, R. A. Agami, J. Kuai, B. Wang & G. Zhou, 2020. Stomata and xylem vessels traits improved by melatonin application contribute to enhancing salt tolerance and fatty acid composition of Brassica napus L. plants. Agronomy, 10 (8): 1186.
  • Monzón, G. C., M. Pinedo, J. Di Rienzo, E. Novo-Uzal, F. Pomar, L. Lamattina & L. de la Canal, 2014. Nitric oxide is required for determining root architecture and lignin composition in sunflower. Supporting evidence from microarray analyses. Nitric Oxide, 39 (1): 20-28.
  • Orłowska, E., W. Przybyłowicz, D. Orlowski, N. P. Mongwaketsi, K. Turnau & J. Mesjasz-Przybyłowicz, 2013. Mycorrhizal colonization affects the elemental distribution in roots of Ni-hyperaccumulator Berkheya coddii Roessler. Environmental Pollution, 175 (1): 100-109.
  • Pedroso, M. C. & D. J. Durzan, 2000. Effect of different gravity environments on DNA fragmentation and cell death in Kalanchoe leaves. Annals of Botany, 86 (1): 983-994.
  • Porra, R. J., W. A. Thompson & P. E. Kriedemann, 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta, 975: 384-394.
  • Roberts, K. & M. C. McCann, 2000. Xylogenesis: the birth of a corpse. Current Opinion in Plant Biology, 3 (6): 517-522.
  • Shakirova, F. M., A. R. Sakhabutdinova, M. V. Bezrukova, R. A. Fatkhutdinova & D. R. Fatkhutdinova, 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science, 164 (3): 317-322.
  • Takahashi, S. & H. Yamasaki, 2002. Reversible inhibition of photophosphorylation in chloroplasts by nitric oxide. FEBS Letters, 512 (1-3): 145-148.
  • Tanaka, R. & A. Tanaka, 2007. Tetrapyrrole biosynthesis in higher plants. Annual Review of Plant Biology, 58 (1): 321-346.
  • Wang, B., Z. Li, Z. Han, S. Xue, Y. Bi & D. Prusky, 2021. Effects of nitric oxide treatment on lignin biosynthesis and texture properties at wound sites of muskmelons. Food Chemistry, 362 (1): 130193.
  • Wang, G. L., F. Que, Z. S. Xu, F. Wang & A. S. Xiong, (2017). Exogenous gibberellin enhances secondary xylem development and lignification in carrot taproot. Protoplasma, 254 (2): 839-848.
  • Whetten, R. W., J. J. MacKay & R. R. Sederoff, 1998. Recent advances in understanding lignin biosynthesis. Annual Review of Plant Biology, 49 (1): 585-609.
  • White, P. J., 2012. “Long-Distance Transport in the Xylem and Phloem, 49-70”. In: Marschner's Mineral Nutrition of Higher Plants (Ed. P. Marschner). Academic Press, 651 pp.
  • Zeisler, V. & L. Schreiber, 2016. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier. Planta, 243 (1): 65-81.
  • Zhu, K., F. Yuan, A. Wang, H. Yang, D. Guan, C. Jin, H. Zhang, Y. Zhang & J. Wu, 2019. Effects of soil rewatering on mesophyll and stomatal conductance and the associated mechanisms involving leaf anatomy and some physiological activities in Manchurian ash and Mongolian oak in the Changbai Mountains. Plant Physiology and Biochemistry, 144 (1): 22-34.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

Servet Aras 0000-0002-0347-6552

Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 16 Aralık 2021
Kabul Tarihi 22 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Aras, S. (2022). Cortical cells, xylem vessels, and chlorophyll biosynthesis improved by acetylsalicylic acid and sodium nitroprusside in peach leaves. Journal of Agriculture Faculty of Ege University, 59(3), 409-417. https://doi.org/10.20289/zfdergi.1037526

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.