Araştırma Makalesi
BibTex RIS Kaynak Göster

Chlorella vulgaris mikroalg ilavesiyle zenginleştirilmiş erişte üretimi

Yıl 2024, , 345 - 355, 18.09.2024
https://doi.org/10.20289/zfdergi.1414830

Öz

Amaç: Bu çalışma Chlorella vulgaris ilaveli erişte formülasyonu geliştirmeyi ve mikroalg ilavesinin eriştenin besinsel, fizikokimyasal ve duyusal özellikleri üzerindeki etkilerini incelemeyi amaçlamaktır.
Materyal ve Yöntem: Erişteye mikroalg ilavesinin kalite ve besinsel özelliklere etkisinin incelenmesi için, sade erişteye C. vulgaris mikroalgi %0.5 ve %2 konsantrasyonlarında eklenmiştir. Eriştenin besinsel bileşenleri (protein ve biyoaktif bileşik içeriği), pişirme özellikleri, sertliği ve duyusal özellikleri analiz edilmiştir. Pişirme özellikleri belirlenirken, makarna için önerilen uluslararası yöntemler uygulanmıştır.
Araştırma Bulguları: Sade eriştede (kontrol grubu), %0.38 antioksidan aktivite ve 3.1 mg GAE/100 g kuru ağırlık fenolik içeriği belirlenmiştir. C. vulgaris eklenerek hazırlanan %0.5 ve %2 konsantrasyonlarındaki erişte örneklerinde ise antioksidan aktivite sırasıyla %12 ve %60 oranında artmış ve toplam fenolik madde içeriği sırasıyla 64.0 ve 76.3 mg GAE/100 g kuru ağırlık olarak saptanmıştır. Mikroalg ilavesiyle pişirme kayıplarında artış görülürken, ağırlık ve hacim parametrelerinde önemli bir değişiklik olmamıştır. Bununla birlikte, sade eriştenin protein içeriği, %2 mikroalg takviyesiyle %13 oranında artış göstermiştir. Eriştenin sertliği de mikroalg ilavesiyle artmıştır.
Sonuç: Bu çalışma, C. vulgaris'in eklenmesinin sadece sade eriştenin kalitesini korumakla kalmayıp aynı zamanda biyoaktif bileşiklerle zenginleştirdiğini göstermektedir. Gelecek çalışmalar mikrobiyolojik ve toksikolojik incelemeleri içermeli ve ticarileştirilmesi için potansiyel kullanım alanları göz önünde bulundurulmalıdır.

Kaynakça

  • AACC, 2000. Approved Methods of the American Association of Cereal Chemists (10th Ed.). St. Paul, MN.
  • Acun, M. & M.K. Bozokalfa, 2020. Mikroalg uygulamalarının salata (Lactuca sativa L. var. crispa) ve marul çeşitlerinin (Lactuca sativa L. var. longifolia) verim ve kalite özelliklerine etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 57 (4): 555-562.
  • Batista, A.P., A. Niccolai, P. Fradinho, S. Fragoso, I. Bursic, L. Rodolfi, N. Biondi, M.R. Tredici, I. Sousa & A. Raymundo, 2017. Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Research, 26: 161-171.
  • Bazarnova, J., L. Nilova, E. Trukhina, M. Bernavskaya, Y. Smyatskaya & T. Aktar, 2021. Use of microalgae biomass for fortification of food products from grain. Foods, 10 (12): 3018.
  • Bilgiçli, N., M.K. Demir, N. Ertaş & E.N. Herken, 2011. Effects of gluten and emulsifier on some properties of erişte prepared with legume flours. International Journal of Food Sciences and Nutrition, 62 (1): 63-70.
  • Bodart, M., R. de Peñaranda, A. Deneyer & G. Flamant, 2008. Photometry and colorimetry characterisation of materials in daylighting evaluation tools. Building and Environment, 43 (12): 2046-2058.
  • Brennan, L. & P. Owende, 2010. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14 (2): 557-577.
  • De Marco, E.R., M.E. Steffolani, C.S. Martínez & A.E. León, 2014. Effects of Spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT-Food Science and Technology, 58 (1): 102-108.
  • El-Baz, F. K., S. M. Abdo, & A. M. Hussein, 2017. Microalgae Dunaliella salina for use as food supplement to improve pasta quality. International Journal of Pharmaceutical Sciences Review and Research, 46 (2): 45-51.
  • ETB, 2022. Erzurum Ticaret Borsası, Erzurum Eriştesi Coğrafi İşaret Tescil Belgesi, No. 1258.
  • Ferdous, U.T., A. Nurdin, S. Ismail & Z.N. Balia Yusof, 2023. Evaluation of the antioxidant and cytotoxic activities of crude extracts from marine Chlorella sp. Biocatalysis and Agricultural Biotechnology, 47: 102551.
  • Foschia, M., D. Peressini, A. Sensidoni, M.A. Brennan & C.S. Brennan, 2015. How combinations of dietary fibres can affect physicochemical characteristics of pasta. LWT-Food Science and Technology, 61 (1): 41-46.
  • Fradique, M., A.P. Batista, M.C. Nunes, L. Gouveia, N.M. Bandarra & A. Raymundo, 2010. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. Journal of the Science of Food and Agriculture, 90 (10): 1656-1664.
  • Göksel Saraç, M., 2021. Bitkisel ve hayvansal proteinlerin eriştenin tekstürel ve duyusal özelliklerine etkisi. Cukurova University, Agriculture Faculty, 36 (1): 23-36.
  • Karabulut, G., H. Feng & O. Yemiş, 2022. Physicochemical and antioxidant properties of industrial hemp seed protein isolate treated by high-intensity ultrasound. Plant Foods for Human Nutrition, 77 (4): 577-583.
  • Lemes, A.C., K.P. Takeuchi, J.C.M. de Carvalho & E.D.G. Danesi, 2012. Fresh pasta production enriched with Spirulina platensis biomass. Brazilian Archives of Biology and Technology, 55 (5): 741-750.
  • Letras, P., S. Oliveira,, J. Varela, M.C. Nunes & A. Raymundo, 2022. 3D printed gluten-free cereal snack with incorporation of Spirulina (Arthrospira platensis) and/or Chlorella vulgaris. Algal Research, 68: 102863.
  • Levent, H., 2019. Performance of einkorn (Triticum monococcum L.) flour in the manufacture of traditional Turkish noodle. Gıda, 44 (5): 932-942.
  • Moura, M.A.F.E., B.A. Martins, G.P. Oliveira & J.A. Takahashi, 2022. Alternative protein sources of plant, algal, fungal and insect origins for dietary diversification in search of nutrition and health. Critical Reviews in Food Science and Nutrition, 63 (31): 10691-10708.
  • Mpalanzi, V., N. W. Alex & D. Chaula, 2023. Textural, cooking quality and sensory acceptability of noodles incorporated with Moringa Leaf and sardine powders. European Journal of Nutrition and Food Safety, 15 (10): 1-20.
  • Oliveira, B. C., M. Machado, S. Machado, A. S. Costa, S. Bessada, R. C. Alves, & M. B. P. Oliveira, 2023. Algae incorporation and nutritional improvement: The case of a whole-wheat pasta. Foods, 12 (16): 3039.
  • Patel, A., E. Krikigianni, U. Rova, P. Christakopoulos & L. Matsakas, 2022. Bioprocessing of volatile fatty acids by oleaginous freshwater microalgae and their potential for biofuel and protein production. Chemical Engineering Journal, 438: 135529 (1-17).
  • Ribeiro, A. R., T. Madeira, G. Botelho, D. Martins, R. M. Ferreira, A. M. Silva & R. Costa, 2022. Brown algae Fucus vesiculosus in pasta: Effects on textural quality, cooking properties, and sensorial traits. Foods, 11 (11): 1561.
  • Spolaore, P., C. Joannis-Cassan, E. Duran & A. Isambert, 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101 (2): 87-96.
  • Tokuşoglu, O. & M.K. Unal, 2003. Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Science, 68 (4): 1144-1148.
  • Udayan, A., A. K. Pandey, P. Sharma, N. Sreekumar & S. Kumar, 2021. Emerging industrial applications of microalgae: challenges and future perspectives. Systems Microbiology and Biomanufacturing, 1: 411-431.
  • Uribe-Wandurraga, Z.N., M. Igual, J. Reino-Moyón, P. García-Segovia & J. Martínez-Monzó, 2021. Effect of microalgae (Arthrospira platensis and Chlorella vulgaris) addition on 3D printed cookies. Food Biophysics, 16 (1): 27-39.
  • Uzuner, S. & A. Haznedar, 2020. Fonksiyonel gıda için sağlıklı takviye: Mikroalgler. Sinop Üniversitesi Fen Bilimleri Dergisi, 5 (2): 212-226.
  • Wojdyło, A., J. Oszmiański & R. Czemerys, 2007. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105 (3): 940-949.
  • Yılmaz Tuncel, N., E. Kaya & M. Karaman, 2017. Rice bran substituted Turkish noodles (erişte): textural, sensorial, and nutritional properties. Cereal Chemistry Journal, 94 (5): 903-908.
  • Zhou, Y., L. Liu, M. Li & C. Hu, 2022. Algal biomass valorisation to high-value chemicals and bioproducts: Recent advances, opportunities and challenges. Bioresource Technology, 344 (B): 126371.
  • Zouari, N., M. Abid, N. Fakhfakh, M.A. Ayadi, L. Zorgui, M. Ayadi & H. Attia, 2011. Blue-green algae (Arthrospira platensis) as an ingredient in pasta: free radical scavenging activity, sensory and cooking characteristics evaluation. International Journal of Food Sciences and Nutrition, 62 (8): 811-813.

Production of erişte enriched with the addition of Chlorella vulgaris microalgae

Yıl 2024, , 345 - 355, 18.09.2024
https://doi.org/10.20289/zfdergi.1414830

Öz

Objective: This study aims to develop Chlorella vulgaris added erişte formulation and examine the effects of microalgae addition on the nutritional, physicochemical, and sensory properties of erişte.
Material and Methods: To examine the effect of microalgae addition on the quality and nutritional properties of erişte, C. vulgaris microalgae were added to plain product at concentrations of 0.5% and 2%. The nutritional components (protein and bioactive compound content), cooking properties, hardness, and sensory characteristics of the erişte were analyzed. International methods recommended for pasta were used to determine cooking properties.
Results: In the control group (plain erişte), 0.38% antioxidant activity and 3.1 mg GAE/100 g dry weight of phenolic content were determined. In erişte samples prepared by adding C. vulgaris at concentrations of 0.5% and 2%, antioxidant activity increased by 12% and 60% respectively; and the total phenolic content was determined as 64.0 and 76.3 mg GAE/100 g dry weight respectively. The addition of microalgae has caused an increase in cooking losses, but there has been no significant change in weight and volume parameters. The protein content of plain erişte has increased by 13% with the addition of 2% microalgae. The hardness of the erişte has also increased with the addition of microalgae.
Conclusion: This study demonstrates that the addition of C. vulgaris not only preserves the quality of plain erişte but also enriches it with bioactive compounds. Future studies should include microbiological and toxicological examinations and consider potential areas of use for commercialization.

Kaynakça

  • AACC, 2000. Approved Methods of the American Association of Cereal Chemists (10th Ed.). St. Paul, MN.
  • Acun, M. & M.K. Bozokalfa, 2020. Mikroalg uygulamalarının salata (Lactuca sativa L. var. crispa) ve marul çeşitlerinin (Lactuca sativa L. var. longifolia) verim ve kalite özelliklerine etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 57 (4): 555-562.
  • Batista, A.P., A. Niccolai, P. Fradinho, S. Fragoso, I. Bursic, L. Rodolfi, N. Biondi, M.R. Tredici, I. Sousa & A. Raymundo, 2017. Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Research, 26: 161-171.
  • Bazarnova, J., L. Nilova, E. Trukhina, M. Bernavskaya, Y. Smyatskaya & T. Aktar, 2021. Use of microalgae biomass for fortification of food products from grain. Foods, 10 (12): 3018.
  • Bilgiçli, N., M.K. Demir, N. Ertaş & E.N. Herken, 2011. Effects of gluten and emulsifier on some properties of erişte prepared with legume flours. International Journal of Food Sciences and Nutrition, 62 (1): 63-70.
  • Bodart, M., R. de Peñaranda, A. Deneyer & G. Flamant, 2008. Photometry and colorimetry characterisation of materials in daylighting evaluation tools. Building and Environment, 43 (12): 2046-2058.
  • Brennan, L. & P. Owende, 2010. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14 (2): 557-577.
  • De Marco, E.R., M.E. Steffolani, C.S. Martínez & A.E. León, 2014. Effects of Spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT-Food Science and Technology, 58 (1): 102-108.
  • El-Baz, F. K., S. M. Abdo, & A. M. Hussein, 2017. Microalgae Dunaliella salina for use as food supplement to improve pasta quality. International Journal of Pharmaceutical Sciences Review and Research, 46 (2): 45-51.
  • ETB, 2022. Erzurum Ticaret Borsası, Erzurum Eriştesi Coğrafi İşaret Tescil Belgesi, No. 1258.
  • Ferdous, U.T., A. Nurdin, S. Ismail & Z.N. Balia Yusof, 2023. Evaluation of the antioxidant and cytotoxic activities of crude extracts from marine Chlorella sp. Biocatalysis and Agricultural Biotechnology, 47: 102551.
  • Foschia, M., D. Peressini, A. Sensidoni, M.A. Brennan & C.S. Brennan, 2015. How combinations of dietary fibres can affect physicochemical characteristics of pasta. LWT-Food Science and Technology, 61 (1): 41-46.
  • Fradique, M., A.P. Batista, M.C. Nunes, L. Gouveia, N.M. Bandarra & A. Raymundo, 2010. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. Journal of the Science of Food and Agriculture, 90 (10): 1656-1664.
  • Göksel Saraç, M., 2021. Bitkisel ve hayvansal proteinlerin eriştenin tekstürel ve duyusal özelliklerine etkisi. Cukurova University, Agriculture Faculty, 36 (1): 23-36.
  • Karabulut, G., H. Feng & O. Yemiş, 2022. Physicochemical and antioxidant properties of industrial hemp seed protein isolate treated by high-intensity ultrasound. Plant Foods for Human Nutrition, 77 (4): 577-583.
  • Lemes, A.C., K.P. Takeuchi, J.C.M. de Carvalho & E.D.G. Danesi, 2012. Fresh pasta production enriched with Spirulina platensis biomass. Brazilian Archives of Biology and Technology, 55 (5): 741-750.
  • Letras, P., S. Oliveira,, J. Varela, M.C. Nunes & A. Raymundo, 2022. 3D printed gluten-free cereal snack with incorporation of Spirulina (Arthrospira platensis) and/or Chlorella vulgaris. Algal Research, 68: 102863.
  • Levent, H., 2019. Performance of einkorn (Triticum monococcum L.) flour in the manufacture of traditional Turkish noodle. Gıda, 44 (5): 932-942.
  • Moura, M.A.F.E., B.A. Martins, G.P. Oliveira & J.A. Takahashi, 2022. Alternative protein sources of plant, algal, fungal and insect origins for dietary diversification in search of nutrition and health. Critical Reviews in Food Science and Nutrition, 63 (31): 10691-10708.
  • Mpalanzi, V., N. W. Alex & D. Chaula, 2023. Textural, cooking quality and sensory acceptability of noodles incorporated with Moringa Leaf and sardine powders. European Journal of Nutrition and Food Safety, 15 (10): 1-20.
  • Oliveira, B. C., M. Machado, S. Machado, A. S. Costa, S. Bessada, R. C. Alves, & M. B. P. Oliveira, 2023. Algae incorporation and nutritional improvement: The case of a whole-wheat pasta. Foods, 12 (16): 3039.
  • Patel, A., E. Krikigianni, U. Rova, P. Christakopoulos & L. Matsakas, 2022. Bioprocessing of volatile fatty acids by oleaginous freshwater microalgae and their potential for biofuel and protein production. Chemical Engineering Journal, 438: 135529 (1-17).
  • Ribeiro, A. R., T. Madeira, G. Botelho, D. Martins, R. M. Ferreira, A. M. Silva & R. Costa, 2022. Brown algae Fucus vesiculosus in pasta: Effects on textural quality, cooking properties, and sensorial traits. Foods, 11 (11): 1561.
  • Spolaore, P., C. Joannis-Cassan, E. Duran & A. Isambert, 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101 (2): 87-96.
  • Tokuşoglu, O. & M.K. Unal, 2003. Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Science, 68 (4): 1144-1148.
  • Udayan, A., A. K. Pandey, P. Sharma, N. Sreekumar & S. Kumar, 2021. Emerging industrial applications of microalgae: challenges and future perspectives. Systems Microbiology and Biomanufacturing, 1: 411-431.
  • Uribe-Wandurraga, Z.N., M. Igual, J. Reino-Moyón, P. García-Segovia & J. Martínez-Monzó, 2021. Effect of microalgae (Arthrospira platensis and Chlorella vulgaris) addition on 3D printed cookies. Food Biophysics, 16 (1): 27-39.
  • Uzuner, S. & A. Haznedar, 2020. Fonksiyonel gıda için sağlıklı takviye: Mikroalgler. Sinop Üniversitesi Fen Bilimleri Dergisi, 5 (2): 212-226.
  • Wojdyło, A., J. Oszmiański & R. Czemerys, 2007. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105 (3): 940-949.
  • Yılmaz Tuncel, N., E. Kaya & M. Karaman, 2017. Rice bran substituted Turkish noodles (erişte): textural, sensorial, and nutritional properties. Cereal Chemistry Journal, 94 (5): 903-908.
  • Zhou, Y., L. Liu, M. Li & C. Hu, 2022. Algal biomass valorisation to high-value chemicals and bioproducts: Recent advances, opportunities and challenges. Bioresource Technology, 344 (B): 126371.
  • Zouari, N., M. Abid, N. Fakhfakh, M.A. Ayadi, L. Zorgui, M. Ayadi & H. Attia, 2011. Blue-green algae (Arthrospira platensis) as an ingredient in pasta: free radical scavenging activity, sensory and cooking characteristics evaluation. International Journal of Food Sciences and Nutrition, 62 (8): 811-813.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği (Diğer), Süt Teknolojisi, Gıda Bilimleri (Diğer)
Bölüm Makaleler
Yazarlar

Hatice Sıçramaz 0000-0002-5943-9566

Gülşah Karabulut 0000-0002-4540-3044

Semanur Yıldız 0000-0002-1845-7813

Erken Görünüm Tarihi 18 Eylül 2024
Yayımlanma Tarihi 18 Eylül 2024
Gönderilme Tarihi 5 Ocak 2024
Kabul Tarihi 1 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Sıçramaz, H., Karabulut, G., & Yıldız, S. (2024). Chlorella vulgaris mikroalg ilavesiyle zenginleştirilmiş erişte üretimi. Journal of Agriculture Faculty of Ege University, 61(3), 345-355. https://doi.org/10.20289/zfdergi.1414830

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.