Araştırma Makalesi
BibTex RIS Kaynak Göster

Tuz stresi altındaki pamukta (Gossypium hirsutum L.) 24-epibrassinolid’in etkinliği

Yıl 2024, , 367 - 381, 18.09.2024
https://doi.org/10.20289/zfdergi.1445604

Öz

Amaç: Üç pamuk (Gossypium hirsutum L.) çeşidinde (Nazilli 84-S, Carmen, Beyaz Altın-119) NaCl stresine karşı 24-epibrassinolid (EBR) uygulamasının etkisi araştırılmıştır.
Materyal ve Yöntem: Pamuk tohumları 3 µM EBR çözeltisi ile 24 saat muamele edildikten sonra saksılara ekilmiş ve 75, 150 mM NaCl içeren Hoagland besin çözeltisiyle sulanmıştır. Çiçeklenme dönemi başlangıcında hasat edilen bitkilerde kuru ağırlık, membran geçirgenliği, stoma yoğunluğu, nispi su kapsamı, antioksidatif enzim aktiviteleri, fotosentetik pigment ve DNA kapsamları belirlenmiştir.
Araştırma Bulguları: EBR uygulaması bitkilerin kuru ağırlıkları, nisbi su kapsamı ve stoma yoğunluğunda meydana gelen düşüşü azaltmıştır. Her üç çeşitte de tuz konsantrasyonunun artması ile membran geçirgenliği artmış, ancak bu artış EBR uygulaması ile azalmıştır. NaCl uygulaması ile antioksidatif enzim aktiviteleri (SOD ve POD) önemli oranda artmıştır. NaCl uygulaması stoma-kilit hücre sayısı, pigment kapsamlarını ve DNA içeriğini azaltmış ancak bu azalma EBR uygulaması ile hafifletilmiştir.
Sonuç: Bu sonuçlar, pamuk çeşitlerinde tuza bağlı olarak antioksidatif enzim aktivitesinde artışı göstermekte ve EBR’nin tuz stresi altındaki pamuk bitkisinde su potansiyeli ve membran bütünlüğünün korunmasına yardımcı olarak stresi hafifletici etkilerini ortaya koymaktadır.

Kaynakça

  • Agami, R.A., 2013. Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. South African Journal of Botany, 88: 171-177. https://doi.org/10.1016/j.sajb.2013.07.019
  • Ahmed, H.H.A., E. Darwish & M.G. Alobaidy, 2017. Impact of putrescine and 24-epibrassinolide on growth, yield and chemical constituents of cotton (Gossypium barbadense L.) plant grown under drought stress conditions. Asian Journal of Plant Sciences, 16 (1): 9-23. https://doi.org/10.3923/ajps.2017.9.23
  • Ali, B., S. Hayat, Q. Fariduddin & A. Ahmad, 2008. 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere, 72: 1387-1392. https://doi.org/10.1016/j.chemosfer.2008.04.012
  • Altunlu, H., 2020. The effects of mycorrhiza and rhizobacteria application on growth and some physiological parameters of pepper (Capsicum annuum L.) under salt stress. Ege Üniversitesi Ziraat Fakültesi Dergisi, 57 (4): 501-510. https://doi.org/10.20289/zfdergi.655491
  • Anonymous, 2024. https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF (Erişim tarihi: 12.01.2024).
  • Anuradha, S. & S.S.R. Rao, 2001. Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regulation, 33: 151-153. https://doi.org/10.1023/A:1017590108484
  • Anuradha, S. & S.S.R. Rao, 2003. Application of brassinosteroids to rice seed (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regulatation, 40: 29-32. https://doi.org/10.1023/A:1023080720374
  • Ashraf, M., 2002. Salt tolerance of cotton: Some new advances. Critical Reviews in Plant Sciences, 21 (1): 1-30. https://doi.org/10.1080/0735-260291044160
  • Bajguz, A., 2000. Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiology and Biochemistry, 38 (3): 209-215. https://doi.org/10.1016/S0981-9428 (00)00733-6
  • Beauchamp, C & I. Fridovich, 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44: 276-287. https://doi.org/10.1016/0003-2697 (71)90370-8
  • Castle, J., T. Montoya & G.J. Bishop, 2003. “Selected Physiological Responses of Brassinosteroids: A Historical Approach, Chapter 2, 45-68”. In: Brassinosteroids, Bioactivity and Crop Productivity (Eds. S. Hayat & A. Ahmad), Springer, 246 pp.
  • Chance, B. & C. Maehly, 1955. Assay of Catalase and Peroxidases. Methods and Enzymology, 11: 764-775.
  • Chen, Y., J. Ge, Y. Liu, R. Li, R. Zhang, K. Li, Z. Huo, K. Xu, H. Wei & Q. Dai, 2022. 24-Epibrassnolide alleviates the adverse effect of salinity on rice grain yield through enhanced antioxidant enzyme and improved K+/Na+ homeostasis. Agronomy, 12: 2499. https://doi.org/10.3390/agronomy12102499
  • Chinnusamy, V., A. Jagendorf & J.K. Zhu, 2005. Understanding and improving salt tolerance in plants. Crop Science, 45: 437-448. https://doi.org/10.2135/cropsci2005.0437
  • Ding, H.D., X.H. Zhu, Z.W. Zhu, S.J. Yang, D.S. Zha & X.X. Wu, 2012. Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. Biologia Plantarum, 56 (4): 767-770. https://doi.org/10.1007/s10535-012-0108-0
  • Djemal, R., H. Moez & E. Chantal, 2023. “Control of Plant Responses to Salt Stress: Significance of Auxin and Brassinosteroids, Open Access Peer-Reviewed Chapter 6”. In: Making Plant Life Easier and Productive Under Salinity-Updates and Prospects (Ed. A.A. Naser), IntechOpen, 176 pp., EBook ISBN: 978-1-83768-878-4., http://dx.doi.org/10.5772/intechopen.106124
  • Dong, Z., J. Huang, T. Qi, Q. Fu, A. Meng & Y. Fu, 2023. Effects of plant regulators on the seed germination and antioxidant enzyme activity of cotton under compound salt stress. Plants, 12 (24): 4112. https://doi.org/10.3390/plants12244112
  • Doyle, J.J. & J.L. Doyle, 1987. A Rapid isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19: 11-15.
  • Dubey, R.S., 2005. “Photosynthesis in Plants under Stressful Conditions, 717-738”. In: Hand Book Photosynthesis (2nd Edition) (Ed. M. Pessarakli), C.R.C. Press, New York, USA, 883 pp.
  • Egbichi, I., M. Keyster, A. Jacobs, A. Klein & N. Ludidi, 2013. Modulation of antioxidant enzyme activities and metabolites ratios by nitric oxide in short-term salt stressed soybean root nodules. South African Journal of Botany, 88: 326-333. https://doi.org/10.1016/j.sajb.2013.08.008
  • Eleiwa, M.E., S.O. Bafeel & S.A. Ibrahim, 2011. Influence of brassinosteroids on wheat plant (Triticum aestivum L.) production under salinity stress conditions I- Growth parameters and photosynthetic pigments. Australian Journal of Basic and Applied Sciences, 5 (5): 58-65.
  • Filek, M., A. Sieprawska, J. Oklestkova, J. Biesaga‑Kościelniak, Z. Miszalski & A. Janeczko, 2018. 24-Epibrassinolide as a modifier of antioxidant activities and membrane properties of wheat cells in zearalenone stress conditions. Journal of Plant Growth Regulation, 37: 1085-1098. https://doi.org/10.1007/s00344-018-9792-0
  • González, L. & M. González-Vilar, 2001. “Determination of Relative Water Content, Chapter 14, 207-212”. In: Handbook of Plant Ecophysiology Techniques (Ed. M.J.R. Roger), Springer, Dordrecht, 468 pp. https://doi.org/10.1007/0-306-48057-3_14
  • Hoagland, D.R. & D.I. Arnon, 1950. The Water-Culture Method for Growing Plants without Soil. University of California, College of Agriculture, Berkeley, 32 pp.
  • Houimli, S.I.M., M. Denden & B.D. Mouhandes, 2010. Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants under NaCl-stress. EurAsian Journal of Biosciences, 4: 96-104. https://doi.org/10.5053/ejobios.2010.4.0.12
  • Jones, M.M. & N.C. Turner, 1978. Osmotic adjustment in leaves of Sorghum in response to water deficits. Plant Physiology, 61: 122-126. https://doi.org/10.1104/pp.61.1.122
  • Kalinich, J.F., N.B. Mandava & J.A. Todhunter, 1986. Relationship of nucleic acid metabolism to brassinolide induced responses in beans. Journal of Plant Physiology, 125 (3-4): 345-353.
  • Karlıdağ, H., E. Yıldırım & M. Turan, 2011. Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria×ananassa). Scientia Horticulturae, 130: 133-140. https://doi.org/10.1016/j.scienta.2011.06.025
  • Katerji, N., J.W.,Van Hoorn, A. Hamdy, M. Mastrorilli & E. Mou Karzel, 1997. Osmotic adjustment of sugar beets in response to soil salinity and its influence on stomatal conductance, growth and yield. Agricultural Water Management, 34 (1): 57-69. https://doi.org/10.1016/S0378-3774 (96)01294-2
  • Kaya, C., M. Ashraf, O. Sönmez, A.L. Tuna, T. Polat & S. Aydemir, 2015. Exogenous application of thiamin promotes growth and antioxidative defense system at initial phases of development in salt-stressed plants of two maize cultivars differing in salinity tolerance. Acta Physiologiae Plantarum, 37: 1741-1753. https://doi.org/10.1007/s11738-014-1741-3
  • Khan, R., X. Ma, Q. Hussain, M. Asim, A. Iqbal, X. Ren, S. Shah, K. Chen & Y. Shi, 2022. Application of 2,4-epibrassinolide improves drought tolerance in tobacco through physiological and biochemical mechanisms. Biology, 11: 1192. https://doi.org/10.3390/biology11081192
  • Kılıç, S., K. Çavuşoğlu & K. Kabar, 2007. Effects of 24-Epibrassinolide on salinity stress induced inhibition of seed germination, seedling growth and leaf anatomy of barley. SDÜ-Fen Edebiyat Fakültesi, Fen Dergisi, 2 (1): 41-52.
  • Kolomeichuk, L.V., M.V. Efimova & I.E. Zlobin, 2020. 24-Epibrassinolide alleviates the toxic effects of NaCl on photosynthetic processes in potato plants. Photosynthetic Research, 146: 151-163. https://doi.org/10.1007/s11120-020-00 708-z
  • Kolomeichuk, L.V., E.D. Danilova, O.K. Murgan, A.L. Sauchuk, R.P. Litvinovskaya, V.A. Khripach, V.V. Kuznetsov & M.V. Efimova, 2023. Endogenous brassinosteroids are involved in the formation of salt resistance in plants. Doklady Biological Sciences, 511: 259-263. https://doi.org/10.1134/S0012496623700485
  • Kurt, C. H., M. Tunçtürk & R. Tunçtürk, 2023. Tuz stresi koşullarında yetiştirilen soya (Glycine max L.) bitkisinde bazı fizyolojik ve biyokimyasal değişimler üzerine salisilik asit uygulamalarının etkileri. Ege Universitesi Ziraat Fakültesi Dergisi, 60 (1): 91-101. https://doi.org/10.20289/zfdergi.1053742
  • Lutts, S., J.M. Kinet & J. Bouharmont, 1996. NaCl-induced sensence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78 (3): 389-398. https://doi.org/10.1006/anbo.1996.0134
  • Mahajan, S & N. Tuteja, 2005. Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444: 139-158. https://doi.org/10.1016/j.abb.2005.10.018
  • Mehrian, S.K., N. Karimi & F. Rahmani, 2023. 24-Epibrassinolide alleviates diazinon oxidative damage by escalating activities of antioxidant defense systems in maize plants. Scientific Reports, 13: 19631. https://doi.org/10.1038/s41598-023-46764-y
  • Munns, R. & M. Gilliham, 2015. Salinity tolerance of crops-what is the cost? New Phytologist, 208: 668-673. https://doi.org/10.1111/nph.13519
  • Ouertani, R.N., D. Arasappan, G. Abid, C.M. Ben, R. Jardak & H. Mahmoudi, 2021. Transcriptomic analysis of salt-stress-responsive genes in barley roots and leaves. International Journal of Molecular Sciences, 22 (15): 8155-8172. https://doi.org/10.3390/ijms22158155
  • Özdemir, F., M. Bor, T. Demiral & İ. Türkan, 2004. Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regulation, 42 (3): 203-211. https://doi.org/10.1023/B:GROW.0000026509.25995.13
  • Parida, A.K. & A.B. Das, 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60 (3): 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  • Raza, M.A.S., M.A. Ibrahim, A. Ditta, R. Iqbal, M. U. Aslam, F. Muhammad, S. Ali, F. Çiğ, B. Ali, R.M. Ikram, M.N. Muzamil, M.H. Rahman, M.S. Alwahibi & M.S. Elshikh, 2023. Exploring the recuperative potential of brassinosteroids and nano-biochar on growth, physiology, and yield of wheat under drought stress. Scientific Reports, 13: 15015. https://doi.org/10.1038/s41598-023-42007-2
  • Sadeghi, F. & A. Shekafandeh, 2014. Effect of 24-epibrassinolide on salinity-induced changes in loquat (Eriobotrya japonica Lindl). Journal of Applied Botany and Food Quality, 87: 182-189. https://doi.org/10.5073/JABFQ.2014.087.026
  • Shahid, M.A., M.A. Pervez, R.M. Balal, N.S. Mattson, A. Rashid, R. Ahmad, C.M. Ayyub & T. Abbas, 2011. Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L.). Australian Journal of Crop Science, 5 (5): 500-510.
  • Shahzad, B., M. Tanveer, Z. Che, A. Rehman, S.A. Cheema, A. Sharma, H. Song, S. Rehman & D. Zhaorong, 2018. Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review. Ecotoxicology and Environmental Safety, 147: 935-944. https://doi.org/10.1016/j.ecoenv.2017.09.066
  • Strain, H.H. & W.A. Svec, 1966. “The Chlorophylls, 21-66”. In: II. Extraction, Separation, Estimation and Isolation of Chlorophylls (Eds. L.P. Vernon & G.R. Seely), Academic Press, N.Y., 447pp.
  • Surgun, Y., E. Yılmaz, B. Çöl & B. Bürün, 2012. Altıncı grup bitki hormonu: Brassinosteroidler. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 8 (1): 27-46.
  • Surgun, Y., H. Altunlu, S. Türkekul, B. Bürün & İ. Yokaş, 2015. Effects of 24-Epibrassinolide on growth and some antioxidant enzymes of cotton (Gossypium hirsutum L.) cultivars under NaCl stress. Journal of Applied Biological Sciences, 9 (3): 9-17.
  • Tanveer, M., B. Shahzad, A. Sharma, S. Biju & R. Bhardwaj, 2018. 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: A review. Plant Physiology and Biochemistry, 130: 69-79. https://doi.org/10.1016/j.plaphy.2018.06.035
  • Tanveer, M., B. Shahzad, A. Sharma & E.A. Khan, 2019. 24-Epibrassinolide application in plants: An implication for improving drought stress tolerance in plants. A review, Plant Physiology and Biochemistry, 135: 295-303. https://doi.org/10.1016/j.plaphy.2018.12.013
  • Vardhini, B.V. & S.S.R. Rao, 1998. Effects of brassinosteroids on growth, metabolite content and yield of Arachis hypogaea. Phytochemistry, 48 (6): 927-930. https://doi.org/10.1016/S0031-9422 (97)00710-3
  • Vardhini, B.V., 2012. Application of brassinolide mitigates saline stress of certain metabolites of sorghum grown in Karaikal. Journal of Phytology, 4 (4): 1-3.
  • Vardhini, B.V., E. Sujatha & S.S.R. Rao, 2012. Influence of brassinosteroids on metabolites of Raphanus sativus L. Journal of Phytology, 4 (2): 45-47.
  • Wani, A.S., A. Ahmad, S. Hayat & I. Tahir, 2019. Epibrassinolide and proline alleviate the photosynthetic and yield inhibition under salt stress by acting on antioxidant system in mustard. Plant Physiology and Biochemistry, 135: 385-394. https://doi.org/10.1016/j.plaphy.2019.01.002
  • Verma, A., C.P. Malik & V.K. Gupta, 2012. In vitro effects of Brassinosteroids on the growth and antioxidant enzyme activities in groundnut. International Scholarly Research Notices, 356485: 1-8. https://doi.org/10.5402/2012/356485
  • Wu, W., Q. Zhang, E. Ervin, Z. Yang & X. Zhang, 2017. Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Frontiers in Plant Science, 8:1017. https://doi.org/10.3389/fpls.2017.01017
  • Yamasaki, S. & L.R. Dillenburg, 1999. Measurements of leaf relative water content in Araucaria angustifolia. Revista Brasileira de Fisiologia Vegetal, 11 (2): 69-75.
  • Yılmaz, E., A.L. Tuna & B. Bürün, 2011. Bitkilerin tuz stresine karşı geliştirdikleri tolerans stratejileri. C.B.U. Journal of Science, 7 (1): 47-66.
  • Zar, J.H., 2014. Biostatistical Analysis. 5th Edition. Pearson Education, India,761 pp.
  • Zeng, L.L., S. Ling-Yu, W. Xuan, M. Dong, S. Shi-Wei, W. Xiu-Xiu & Z. Hai-Lei, 2024. Brassinosteroid enhances salt tolerance via S-nitrosoglutathione reductase and nitric oxide signaling pathway in mangrove Kandelia obovata. Plant, Cell & Environment, 47 (2): 511-526. https://doi.org/10.1111/pce.14745

Efficacy of 24-epibrassinolide in cotton (Gossypium hirsutum L.) under salt stress

Yıl 2024, , 367 - 381, 18.09.2024
https://doi.org/10.20289/zfdergi.1445604

Öz

Objective: The effect of 24-epibrassinolide (EBR) application against NaCl stress in three cotton (Gossypium hirsutum L.) cultivars (Nazilli 84-S, Carmen, White Gold 119) was investigated.
Material and Methods: After the seeds were treated with 3 µM EBR solution for 24 h, they were sowed in pots and watered with Hoagland nutrient solution containing 75 and 150 mM NaCl. Plant dry weight, membrane permeability, stomatal density, relative water content, photosynthetic pigment contents, antioxidative enzyme activities, and DNA content were determined in the plants harvested at the beginning of the flowering period.
Results: EBR treatments reduced the decrease in dry weights, relative water content, and stomatal density of plants. Membrane permeability increased with increasing salt concentration in all three varieties, but this increase decreased with the EBR treatment. Antioxidative enzyme activities (SOD and POD) increased significantly with NaCl application. NaCl application reduced stoma-guard cell number, photosynthetic pigment and DNA content, but this decrease was improved by EBR treatment.
Conclusion: These results show a salt-dependent increase in antioxidative enzyme activity in cotton varieties and reveal the stress-relieving effects of EBR by helping to maintain water potential and membrane integrity in cotton plants under salt stress.

Kaynakça

  • Agami, R.A., 2013. Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. South African Journal of Botany, 88: 171-177. https://doi.org/10.1016/j.sajb.2013.07.019
  • Ahmed, H.H.A., E. Darwish & M.G. Alobaidy, 2017. Impact of putrescine and 24-epibrassinolide on growth, yield and chemical constituents of cotton (Gossypium barbadense L.) plant grown under drought stress conditions. Asian Journal of Plant Sciences, 16 (1): 9-23. https://doi.org/10.3923/ajps.2017.9.23
  • Ali, B., S. Hayat, Q. Fariduddin & A. Ahmad, 2008. 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere, 72: 1387-1392. https://doi.org/10.1016/j.chemosfer.2008.04.012
  • Altunlu, H., 2020. The effects of mycorrhiza and rhizobacteria application on growth and some physiological parameters of pepper (Capsicum annuum L.) under salt stress. Ege Üniversitesi Ziraat Fakültesi Dergisi, 57 (4): 501-510. https://doi.org/10.20289/zfdergi.655491
  • Anonymous, 2024. https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF (Erişim tarihi: 12.01.2024).
  • Anuradha, S. & S.S.R. Rao, 2001. Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regulation, 33: 151-153. https://doi.org/10.1023/A:1017590108484
  • Anuradha, S. & S.S.R. Rao, 2003. Application of brassinosteroids to rice seed (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regulatation, 40: 29-32. https://doi.org/10.1023/A:1023080720374
  • Ashraf, M., 2002. Salt tolerance of cotton: Some new advances. Critical Reviews in Plant Sciences, 21 (1): 1-30. https://doi.org/10.1080/0735-260291044160
  • Bajguz, A., 2000. Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiology and Biochemistry, 38 (3): 209-215. https://doi.org/10.1016/S0981-9428 (00)00733-6
  • Beauchamp, C & I. Fridovich, 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44: 276-287. https://doi.org/10.1016/0003-2697 (71)90370-8
  • Castle, J., T. Montoya & G.J. Bishop, 2003. “Selected Physiological Responses of Brassinosteroids: A Historical Approach, Chapter 2, 45-68”. In: Brassinosteroids, Bioactivity and Crop Productivity (Eds. S. Hayat & A. Ahmad), Springer, 246 pp.
  • Chance, B. & C. Maehly, 1955. Assay of Catalase and Peroxidases. Methods and Enzymology, 11: 764-775.
  • Chen, Y., J. Ge, Y. Liu, R. Li, R. Zhang, K. Li, Z. Huo, K. Xu, H. Wei & Q. Dai, 2022. 24-Epibrassnolide alleviates the adverse effect of salinity on rice grain yield through enhanced antioxidant enzyme and improved K+/Na+ homeostasis. Agronomy, 12: 2499. https://doi.org/10.3390/agronomy12102499
  • Chinnusamy, V., A. Jagendorf & J.K. Zhu, 2005. Understanding and improving salt tolerance in plants. Crop Science, 45: 437-448. https://doi.org/10.2135/cropsci2005.0437
  • Ding, H.D., X.H. Zhu, Z.W. Zhu, S.J. Yang, D.S. Zha & X.X. Wu, 2012. Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. Biologia Plantarum, 56 (4): 767-770. https://doi.org/10.1007/s10535-012-0108-0
  • Djemal, R., H. Moez & E. Chantal, 2023. “Control of Plant Responses to Salt Stress: Significance of Auxin and Brassinosteroids, Open Access Peer-Reviewed Chapter 6”. In: Making Plant Life Easier and Productive Under Salinity-Updates and Prospects (Ed. A.A. Naser), IntechOpen, 176 pp., EBook ISBN: 978-1-83768-878-4., http://dx.doi.org/10.5772/intechopen.106124
  • Dong, Z., J. Huang, T. Qi, Q. Fu, A. Meng & Y. Fu, 2023. Effects of plant regulators on the seed germination and antioxidant enzyme activity of cotton under compound salt stress. Plants, 12 (24): 4112. https://doi.org/10.3390/plants12244112
  • Doyle, J.J. & J.L. Doyle, 1987. A Rapid isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19: 11-15.
  • Dubey, R.S., 2005. “Photosynthesis in Plants under Stressful Conditions, 717-738”. In: Hand Book Photosynthesis (2nd Edition) (Ed. M. Pessarakli), C.R.C. Press, New York, USA, 883 pp.
  • Egbichi, I., M. Keyster, A. Jacobs, A. Klein & N. Ludidi, 2013. Modulation of antioxidant enzyme activities and metabolites ratios by nitric oxide in short-term salt stressed soybean root nodules. South African Journal of Botany, 88: 326-333. https://doi.org/10.1016/j.sajb.2013.08.008
  • Eleiwa, M.E., S.O. Bafeel & S.A. Ibrahim, 2011. Influence of brassinosteroids on wheat plant (Triticum aestivum L.) production under salinity stress conditions I- Growth parameters and photosynthetic pigments. Australian Journal of Basic and Applied Sciences, 5 (5): 58-65.
  • Filek, M., A. Sieprawska, J. Oklestkova, J. Biesaga‑Kościelniak, Z. Miszalski & A. Janeczko, 2018. 24-Epibrassinolide as a modifier of antioxidant activities and membrane properties of wheat cells in zearalenone stress conditions. Journal of Plant Growth Regulation, 37: 1085-1098. https://doi.org/10.1007/s00344-018-9792-0
  • González, L. & M. González-Vilar, 2001. “Determination of Relative Water Content, Chapter 14, 207-212”. In: Handbook of Plant Ecophysiology Techniques (Ed. M.J.R. Roger), Springer, Dordrecht, 468 pp. https://doi.org/10.1007/0-306-48057-3_14
  • Hoagland, D.R. & D.I. Arnon, 1950. The Water-Culture Method for Growing Plants without Soil. University of California, College of Agriculture, Berkeley, 32 pp.
  • Houimli, S.I.M., M. Denden & B.D. Mouhandes, 2010. Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants under NaCl-stress. EurAsian Journal of Biosciences, 4: 96-104. https://doi.org/10.5053/ejobios.2010.4.0.12
  • Jones, M.M. & N.C. Turner, 1978. Osmotic adjustment in leaves of Sorghum in response to water deficits. Plant Physiology, 61: 122-126. https://doi.org/10.1104/pp.61.1.122
  • Kalinich, J.F., N.B. Mandava & J.A. Todhunter, 1986. Relationship of nucleic acid metabolism to brassinolide induced responses in beans. Journal of Plant Physiology, 125 (3-4): 345-353.
  • Karlıdağ, H., E. Yıldırım & M. Turan, 2011. Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria×ananassa). Scientia Horticulturae, 130: 133-140. https://doi.org/10.1016/j.scienta.2011.06.025
  • Katerji, N., J.W.,Van Hoorn, A. Hamdy, M. Mastrorilli & E. Mou Karzel, 1997. Osmotic adjustment of sugar beets in response to soil salinity and its influence on stomatal conductance, growth and yield. Agricultural Water Management, 34 (1): 57-69. https://doi.org/10.1016/S0378-3774 (96)01294-2
  • Kaya, C., M. Ashraf, O. Sönmez, A.L. Tuna, T. Polat & S. Aydemir, 2015. Exogenous application of thiamin promotes growth and antioxidative defense system at initial phases of development in salt-stressed plants of two maize cultivars differing in salinity tolerance. Acta Physiologiae Plantarum, 37: 1741-1753. https://doi.org/10.1007/s11738-014-1741-3
  • Khan, R., X. Ma, Q. Hussain, M. Asim, A. Iqbal, X. Ren, S. Shah, K. Chen & Y. Shi, 2022. Application of 2,4-epibrassinolide improves drought tolerance in tobacco through physiological and biochemical mechanisms. Biology, 11: 1192. https://doi.org/10.3390/biology11081192
  • Kılıç, S., K. Çavuşoğlu & K. Kabar, 2007. Effects of 24-Epibrassinolide on salinity stress induced inhibition of seed germination, seedling growth and leaf anatomy of barley. SDÜ-Fen Edebiyat Fakültesi, Fen Dergisi, 2 (1): 41-52.
  • Kolomeichuk, L.V., M.V. Efimova & I.E. Zlobin, 2020. 24-Epibrassinolide alleviates the toxic effects of NaCl on photosynthetic processes in potato plants. Photosynthetic Research, 146: 151-163. https://doi.org/10.1007/s11120-020-00 708-z
  • Kolomeichuk, L.V., E.D. Danilova, O.K. Murgan, A.L. Sauchuk, R.P. Litvinovskaya, V.A. Khripach, V.V. Kuznetsov & M.V. Efimova, 2023. Endogenous brassinosteroids are involved in the formation of salt resistance in plants. Doklady Biological Sciences, 511: 259-263. https://doi.org/10.1134/S0012496623700485
  • Kurt, C. H., M. Tunçtürk & R. Tunçtürk, 2023. Tuz stresi koşullarında yetiştirilen soya (Glycine max L.) bitkisinde bazı fizyolojik ve biyokimyasal değişimler üzerine salisilik asit uygulamalarının etkileri. Ege Universitesi Ziraat Fakültesi Dergisi, 60 (1): 91-101. https://doi.org/10.20289/zfdergi.1053742
  • Lutts, S., J.M. Kinet & J. Bouharmont, 1996. NaCl-induced sensence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78 (3): 389-398. https://doi.org/10.1006/anbo.1996.0134
  • Mahajan, S & N. Tuteja, 2005. Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444: 139-158. https://doi.org/10.1016/j.abb.2005.10.018
  • Mehrian, S.K., N. Karimi & F. Rahmani, 2023. 24-Epibrassinolide alleviates diazinon oxidative damage by escalating activities of antioxidant defense systems in maize plants. Scientific Reports, 13: 19631. https://doi.org/10.1038/s41598-023-46764-y
  • Munns, R. & M. Gilliham, 2015. Salinity tolerance of crops-what is the cost? New Phytologist, 208: 668-673. https://doi.org/10.1111/nph.13519
  • Ouertani, R.N., D. Arasappan, G. Abid, C.M. Ben, R. Jardak & H. Mahmoudi, 2021. Transcriptomic analysis of salt-stress-responsive genes in barley roots and leaves. International Journal of Molecular Sciences, 22 (15): 8155-8172. https://doi.org/10.3390/ijms22158155
  • Özdemir, F., M. Bor, T. Demiral & İ. Türkan, 2004. Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regulation, 42 (3): 203-211. https://doi.org/10.1023/B:GROW.0000026509.25995.13
  • Parida, A.K. & A.B. Das, 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60 (3): 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  • Raza, M.A.S., M.A. Ibrahim, A. Ditta, R. Iqbal, M. U. Aslam, F. Muhammad, S. Ali, F. Çiğ, B. Ali, R.M. Ikram, M.N. Muzamil, M.H. Rahman, M.S. Alwahibi & M.S. Elshikh, 2023. Exploring the recuperative potential of brassinosteroids and nano-biochar on growth, physiology, and yield of wheat under drought stress. Scientific Reports, 13: 15015. https://doi.org/10.1038/s41598-023-42007-2
  • Sadeghi, F. & A. Shekafandeh, 2014. Effect of 24-epibrassinolide on salinity-induced changes in loquat (Eriobotrya japonica Lindl). Journal of Applied Botany and Food Quality, 87: 182-189. https://doi.org/10.5073/JABFQ.2014.087.026
  • Shahid, M.A., M.A. Pervez, R.M. Balal, N.S. Mattson, A. Rashid, R. Ahmad, C.M. Ayyub & T. Abbas, 2011. Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L.). Australian Journal of Crop Science, 5 (5): 500-510.
  • Shahzad, B., M. Tanveer, Z. Che, A. Rehman, S.A. Cheema, A. Sharma, H. Song, S. Rehman & D. Zhaorong, 2018. Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review. Ecotoxicology and Environmental Safety, 147: 935-944. https://doi.org/10.1016/j.ecoenv.2017.09.066
  • Strain, H.H. & W.A. Svec, 1966. “The Chlorophylls, 21-66”. In: II. Extraction, Separation, Estimation and Isolation of Chlorophylls (Eds. L.P. Vernon & G.R. Seely), Academic Press, N.Y., 447pp.
  • Surgun, Y., E. Yılmaz, B. Çöl & B. Bürün, 2012. Altıncı grup bitki hormonu: Brassinosteroidler. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 8 (1): 27-46.
  • Surgun, Y., H. Altunlu, S. Türkekul, B. Bürün & İ. Yokaş, 2015. Effects of 24-Epibrassinolide on growth and some antioxidant enzymes of cotton (Gossypium hirsutum L.) cultivars under NaCl stress. Journal of Applied Biological Sciences, 9 (3): 9-17.
  • Tanveer, M., B. Shahzad, A. Sharma, S. Biju & R. Bhardwaj, 2018. 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: A review. Plant Physiology and Biochemistry, 130: 69-79. https://doi.org/10.1016/j.plaphy.2018.06.035
  • Tanveer, M., B. Shahzad, A. Sharma & E.A. Khan, 2019. 24-Epibrassinolide application in plants: An implication for improving drought stress tolerance in plants. A review, Plant Physiology and Biochemistry, 135: 295-303. https://doi.org/10.1016/j.plaphy.2018.12.013
  • Vardhini, B.V. & S.S.R. Rao, 1998. Effects of brassinosteroids on growth, metabolite content and yield of Arachis hypogaea. Phytochemistry, 48 (6): 927-930. https://doi.org/10.1016/S0031-9422 (97)00710-3
  • Vardhini, B.V., 2012. Application of brassinolide mitigates saline stress of certain metabolites of sorghum grown in Karaikal. Journal of Phytology, 4 (4): 1-3.
  • Vardhini, B.V., E. Sujatha & S.S.R. Rao, 2012. Influence of brassinosteroids on metabolites of Raphanus sativus L. Journal of Phytology, 4 (2): 45-47.
  • Wani, A.S., A. Ahmad, S. Hayat & I. Tahir, 2019. Epibrassinolide and proline alleviate the photosynthetic and yield inhibition under salt stress by acting on antioxidant system in mustard. Plant Physiology and Biochemistry, 135: 385-394. https://doi.org/10.1016/j.plaphy.2019.01.002
  • Verma, A., C.P. Malik & V.K. Gupta, 2012. In vitro effects of Brassinosteroids on the growth and antioxidant enzyme activities in groundnut. International Scholarly Research Notices, 356485: 1-8. https://doi.org/10.5402/2012/356485
  • Wu, W., Q. Zhang, E. Ervin, Z. Yang & X. Zhang, 2017. Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Frontiers in Plant Science, 8:1017. https://doi.org/10.3389/fpls.2017.01017
  • Yamasaki, S. & L.R. Dillenburg, 1999. Measurements of leaf relative water content in Araucaria angustifolia. Revista Brasileira de Fisiologia Vegetal, 11 (2): 69-75.
  • Yılmaz, E., A.L. Tuna & B. Bürün, 2011. Bitkilerin tuz stresine karşı geliştirdikleri tolerans stratejileri. C.B.U. Journal of Science, 7 (1): 47-66.
  • Zar, J.H., 2014. Biostatistical Analysis. 5th Edition. Pearson Education, India,761 pp.
  • Zeng, L.L., S. Ling-Yu, W. Xuan, M. Dong, S. Shi-Wei, W. Xiu-Xiu & Z. Hai-Lei, 2024. Brassinosteroid enhances salt tolerance via S-nitrosoglutathione reductase and nitric oxide signaling pathway in mangrove Kandelia obovata. Plant, Cell & Environment, 47 (2): 511-526. https://doi.org/10.1111/pce.14745
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Tarımda Bitki Biyokimyası ve Fizyolojisi
Bölüm Makaleler
Yazarlar

Hakan Altunlu 0000-0001-6219-577X

Yonca Surgun Acar 0000-0002-8684-329X

Filiz Altan 0000-0001-6358-2448

Atilla Levent Tuna 0000-0001-5123-0031

Betül Bürün 0000-0002-3758-0630

Erken Görünüm Tarihi 18 Eylül 2024
Yayımlanma Tarihi 18 Eylül 2024
Gönderilme Tarihi 1 Mart 2024
Kabul Tarihi 4 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Altunlu, H., Surgun Acar, Y., Altan, F., Tuna, A. L., vd. (2024). Tuz stresi altındaki pamukta (Gossypium hirsutum L.) 24-epibrassinolid’in etkinliği. Journal of Agriculture Faculty of Ege University, 61(3), 367-381. https://doi.org/10.20289/zfdergi.1445604

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.