Araştırma Makalesi
BibTex RIS Kaynak Göster

A Pre-Study on Comparison of Effects of Veejet and Fulljet Types Nozzles at Different Pressures on Rain Intensity, Christiansen Coefficient, Runoff and Soil Losses

Yıl 2020, , 209 - 218, 30.06.2020
https://doi.org/10.20289/zfdergi.553142

Öz

Objective: In this study, it was aimed to compare the effects of Veejet and Fulljet nozzles
at different pressures on rain intensity, Christiansen coefficient, runoff, and soil losses by
using a rainfall simulator under laboratory conditions.
Material and Methods: In this study, 25 cups were placed on a platform sized 100x100
cm at 9% sloped, and rainfalls were applied on these cups during 10 minutes at 10, 20,
30 and 40 kPa pressures. After rainfall simulations, rainfall intensities and Christiansen
coefficients were calculated. A clay sandy loam soil sample, pass thought 8 mm sieve,
were placed into erosion pans with a sized as 50x100x15 cm. After same artificial rainfalls
were applied during an hour on soil surfaces, runoff and soil losses were calculated.
Results: Rainfall intensities, Christiansen coefficients, runoff and soil losses were
increased significantly by increasing pressures in both of Veejet and Fulljet nozzles.
In addition, the highest runoff-soil loss relations were obtained from Fulljet 40 S and
Veejet 80100 nozzles.
Conclusions: Both of Veejet and Fulljet nozzles were very effective on the relationships
runoff-soil losses in this study. For these reasons, Fulljet nozzles can also be used easily
in erosion researches such as Veejet nozzles.

Kaynakça

  • Akalan, İ. 1967. Toprak Fiziksel Özellikleri ve Erozyon. Ankara Üniversitesi Ziraat Fakültesi Yıllığı, (3-4): 490-503.
  • Akalan, İ. 1974. Toprak ve Su Muhafazası. Ankara Üniversitesi Ziraat Fakültesi Yayın No: 532, Ankara.
  • Aksoy, H., N.E. Ünal, S. Cokgor, A. Gedikli, J.Yoon, K. Koca, S.D. İnci, E. Eris (2012). A rainfall simulator for laboratory-scale assessment of rainfall-runoff-sediment transport processes over a two dimensional flume. Catena, 98: 63-72.
  • Alves, S.T., H.G. Macpherson and J.A. Gomez. 2008. A portable integrated rainfall and overland plow simulator. Soil Use and Management, 24: 163-170.
  • Anonim, 1993. Türkiye Akarsularında Sediment Gözlemleri ve Sediment Taşınım Miktarları. Elektrik İşleri Etüd İdaresi. Yayın No: 93-59.
  • Anonymous, 1993. Soil Survey Manual. United States of Department of Agricultural Handbook No: 18, United States Goverment Print Office, Washington.
  • Anonymous, 1999. SPSS 9 for Windows User’s Guide. Copyright 1999 by SPSS Incoorparation SPSS, Chicago, IL.
  • Arraez, J., T. Lasanta, P. Ruiz-Flano, L. Ortigosa (2007). Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil&Tillage Research, 93: 324-334.
  • Bubenzer, G.D. and L.D. Meyer. 1965. Simulation of rainfall and soils for laboratory research. Transaction of American Society of Agricultural Engineers, 8: 73-75p.
  • Canady, N.H., D.C. Flanagan (2004). Use of polyacrylamide to reduce runoff, soil loss and nutrient loss under lagoon effluent sprinkler irrigation. ASAE/CSAE Annual International Meeting, 1-4 August 2004, Ottawa, Ontario, CANADA.
  • Carlesso, R., R.B Spohr, F.L.F. Eltz, C.H. Flores (2011). Runoff estimation in Southern Brazil based on Smith’s modified model and the curve number method. Agricultural Water Management, 98 (6): 1020-1026.
  • Christiansen, J.E. 1942. Irrigation by sprinkling. University of California Agricultural Experiment Station Bulltenin No: 670.
  • Chouksey, A., V. Lambey, B.R. Nikam, S.P. Aggarwal (2017). Hydrological modelling using a rainfall simulator oven an experimental hillslope plot. Hydrology, 4: 17.
  • Corona, R., T. Wilson, L. ProD’Adderio, F. Poncu, N. Montaldo and J. Albertson. 2013. On the estimation of surface runoff through a new plot scale rainfall simulator in Sardinia, Italy. International Conference on Four Decades of Progress in Monitoring and Modelling of Processes in the Soil-Plant-Atmosphere System Location Naples, Italy, June 19-21, 2013, Procedra Environmental Sciences, (Edt: Romaro, N., Durso, G., Severno, G.) 19: 875-884.
  • Fiener, P., S.P. Seibert, K. Auerswald (2011). A compilation and meta-analysis of rainfall simulation data on arable soils. Journal of Hydrology, 409 (1-2): 395-406.
  • Fraunfeld, B., C. Truman (2003). Variable rainfall intensity effects on runoff and inter rill erosion from two coastal plain Ultisols in Georgia. Soil Science, 196 (2): 143-154.
  • Gabric, O., D. Prodanovic and J. Plavsic. 2015. The effects of oscilating nozzle on Cristiansen’s uniformity coefficient. Technical Gazette, 22 (6): 1415-1418.
  • Gabriels, D. and M. De Boodt, 1975. A rainfall simulator for erosion studies in the laboratory. Pedologie, 2: 80-86.
  • Gee, G.W. and J.V. Bauder. 1986. Particle Size Analysis. Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, 2nd Edition. No: 9, 383-411, Madison, Wisconsin, USA.
  • Humphry, J.B., T.C. Daniel, D.R. Edwards and A.N. Sharpley. 2002. A portable rainfall simulator for plot-scale runoff studies. Applied Engineering in Agriculture, 18 (2): 199-204.
  • Hunt, N. and R. Gilkes. 1992. Farm Monitoring Handbook. The University of Western Australia: Netherlands, WA.
  • Iserloh, T., J.B. Ries, J. Arnaez, C.B. Fayos, V. Butzen, A. Cerda, M.T. Echeverria, J.F. Galvez, W. Fister, C. Geibler, J.A. Gomez, H.G. Macpherson, N.J. Kuhn, R.
  • Lazaro, F.J. Leon, M.M. Mena, J.F.M Murillo, M. Marzen, M.D. Mingorance, L. Ortigasa, P. Peters, D. Regües, J.D.R. Sinoga, T. Scholten, M. Seeger, A.S. Benet, R. Wengel, S. Wirtz. 2000. European small portable rainfall simulators: A comparasion of rainfall characteristics. Catena, 110: 100-112.
  • Kemper, W.D. and R.C. Rosenau. 1986. Aggregate Stability and Size Distribution. In A. Klute et al., Methods of Soil Analysis, Part 1. Physical and Minerological Methods, 425-442, 2nd Edition, Agronomy Monograph, Soil Science of America, Madison, USA.
  • Lal, R. 1988. Soil Erosion Research Methods. Soil and Water Conservation Society, Iowa.
  • Mhaske, S.N., K. Pathak, A. Basak (2019). A comprehensive design of rainfall simulator for the assessment of soil erosion in the laboratory. Catena, 172: 408-420.
  • Middleton, H.E. 1930. Properties of Soil Which Influence Soil Erosion. United States of Depertment of Agricultural Technician Bultenin, No: 178.
  • Mutchler, C. K. and W. C. Moldenhauer, 1963. Applicator for laboratory rainfall simulator. Transaction of the ASAE, 6:220-222.
  • Neal, J.H. 1938. The Effect of The Degree of Slope and Rainfall Characteristics on Runoff and Soil Erosion. Agricultural of Experiments of Strategies Research Bultenin, No: 280.
  • Nelson, R.E. 1982. Carbonate and Gypsum. Methods of Soil Analysis, Part 2, 2nd Edition. No:9, 181-197, Madison, Wisconsin, USA.
  • Nelson, D.W. and L.E. Sommers. 1982. Total Carbon, Organic Carbon and Organic Matter. Methods of Soil Analysis. Part 2, Chemical and Microbiological Properties, 2nd Edition, No:9, 539-579, Madison, Wisconsin, USA.
  • Pall, R., W.T. Dickinson, D. Beals and R. Mc Girr. 1983. Development and calibration of a rainfall simulator. Canadian Agricultural Engineering, 25: 181-187.
  • Pansu, M. and J. Gautheyroux. 2006. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods, Springer Verlag, Berlin.
  • Perez, L.F.J., L, De Castro, A. Delgado (2010). A comprasion of two variable intensity rainfall simulators for runoff studies. Soil&Tillage Research, 107: 11-16.
  • Perez, R.R., M.J. Marques, L. Jimenez, S.G. Ormaechea, R. Brenez. 2004. Testing of rainfall simulator nozzles for suitability within soil erosion plots. Land Degradation and Rehabilition: Dryland Ecosystems. Papers presented at the 4th International Conference on Land Degradation, Cartagena, Murcia, Spain, 12-17 September 2004, 2009: 191-199.
  • Sausa, J.S.F. and E.Q. Siqueira. 2011. Development and Calibration of a Rainfall Simulator for Urban Hydrology Research. 12th International Conference on Urban Drainage, Porto Alegre, Brasil, 11-16 September 2011.
  • Schlichting, E. und H.P. Blume. 1966. Bodenkundliches Prakticum. Verlag Paul Paney, Hamburg.
  • Shi, P., C. Arter, X. Liu, M Keller, R. Schulin. 2017. Soil aggregate stability and size-selective sediment transport with surface runoff as affected by organic residue amentment. Science of the Total Environment, 607-608: 95-102.
  • Sönmez, K. 1994.Toprak Koruma. Atatürk Üniversitesi Ziraat Fakültesi Yayınları No: 169.
  • Taysun, A. 1985. Doğal ve Yapma Yağışın Karşılaştırılması Yağış Benzeticiler ve Damla Düşme Hızı Tayin Aletleri. T.C. Tarım Orman ve Köyişleri Bakanlığı Köy Hizmetleri Genel Müdürlüğü Menemen Bölge Topraksu Araştırma Enstitüsü Müdürlüğü, Yayın No:119:13, Menemen, İzmir, 55 sayfa.
  • Taysun, A. 1986. Gediz Havzasında Rendzina Tarım Topraklarında Yapay Yağmurlayıcı Yardımıyla Taşlar, Bitki Artıkları ve Polivinilalkolün (PVA) Toprak Özellikleri ile Birlikte Erozyona Etkileri Üzerine Araştırmalar. Ege Üniversitesi Ziraat Fakültesi, Yayın No: 474.
  • Taysun, A. 1989. Toprak ve Su Korunumu. Ege Üniversitesi Ziraat Fakültesi, Teksir No: 92-III, Bornova.
  • Tossell, R.W., W.T. Dickinson, R.P. Rudra and G.J. Wall. 1987. A portable rainfall simulator. Canadian Agricultural Engineering, 29: 155-162.
  • Truman, C.C., T.L. Potter, R.C. Nuti. 2011. Quantifying variable rainfall intensity events on runoff and sediment losses. Water Resources Management, WIT Transactions on Ecology and the Environment, 145: 275-283.
  • Yönter, G. ve H. Uysal. 2016. Tütün atığının (serme ve karıştırma) tın bünyeli bir toprağın bazı erozyon parametreleri ve kimyasal özellikleri üzerine etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 53 (1):11-17.
  • Yönter, G. 2016. Erozyon araştırmalarında kullanılan Veejet tipi memelerin yağış yoğunluğu ve Christiansen eş su dağılım katsayısına etkileri üzerine bir çalışma. Ege Üniversitesi Ziraat Fakültesi Dergisi, 53 (2):192-202.

Farklı Basınçlarda Veejet ve Fulljet Tipi Başlıkların Yağış Şiddeti, Christiansen Katsayısı, Yüzey Akış ve Toprak Kayıpları Üzerine Etkilerinin Kıyaslanması Üzerine Bir Ön Çalışma

Yıl 2020, , 209 - 218, 30.06.2020
https://doi.org/10.20289/zfdergi.553142

Öz

Amaç: Bu çalışmada, laboratuvar koşulları altında yapay yağmurlayıcı kullanarak Veejet
ve Fulljet tip başlıkların farklı basınçlarda yağış şiddetleri, Christiansen katsayıları, yüzey
akışlar ve toprak kayıpları üzerine etkilerini kıyaslamak amaçlanmıştır.
Materyal ve Metot: Bu araştırmada, 25 kap % 9 eğimli 100x100 cm boyutlu bir platform
üzerine yerleştirilmiş ve kaplara 10 dakika süreyle 10, 20, 30 ve 40 kPa basınçlarda yapay
yağış uygulanmıştır. Bu yağış uygulamalarından sonra yağış şiddetleri ve Christiasen
katsayıları hesaplanmıştır. 50x100x15 cm boyutlu erozyon tavalarına, 8 mm’den elenmiş
killi kumlu tın bünyeli toprak örneği yerleştirilmiştir. Aynı yapay yağışlar bir saat süresince
toprak yüzeylerine uygulandıktan sonra, yüzey akış ve toprak kayıpları hesaplanmıştır.
Bulgular: Veejet ve Fulljet başlıkların her ikisinde de uygulanan basınçların artmasıyla
yağış şiddeti, Christiansen katsayıları, yüzey akışlar ve toprak kayıpları önemli düzeylerde
artmıştır. Ayrıca, en yüksek yüzey akış-toprak kaybı ilişkileri Veejet 80100 ve Fulljet 40 S
başlıklardan elde edilmiştir.
Sonuç: Bu çalışmada, hem Veejet hem de Fulljet başlıklar, yüzey akış-toprak kayıpları
ilişkileri üzerinde çok etkili olmuşlardır. Bu nedenden dolayı Fulljet başlıklar da Veejet
başlıklar gibi erozyon araştırmalarında kolaylıkla kullanılabilir.

Kaynakça

  • Akalan, İ. 1967. Toprak Fiziksel Özellikleri ve Erozyon. Ankara Üniversitesi Ziraat Fakültesi Yıllığı, (3-4): 490-503.
  • Akalan, İ. 1974. Toprak ve Su Muhafazası. Ankara Üniversitesi Ziraat Fakültesi Yayın No: 532, Ankara.
  • Aksoy, H., N.E. Ünal, S. Cokgor, A. Gedikli, J.Yoon, K. Koca, S.D. İnci, E. Eris (2012). A rainfall simulator for laboratory-scale assessment of rainfall-runoff-sediment transport processes over a two dimensional flume. Catena, 98: 63-72.
  • Alves, S.T., H.G. Macpherson and J.A. Gomez. 2008. A portable integrated rainfall and overland plow simulator. Soil Use and Management, 24: 163-170.
  • Anonim, 1993. Türkiye Akarsularında Sediment Gözlemleri ve Sediment Taşınım Miktarları. Elektrik İşleri Etüd İdaresi. Yayın No: 93-59.
  • Anonymous, 1993. Soil Survey Manual. United States of Department of Agricultural Handbook No: 18, United States Goverment Print Office, Washington.
  • Anonymous, 1999. SPSS 9 for Windows User’s Guide. Copyright 1999 by SPSS Incoorparation SPSS, Chicago, IL.
  • Arraez, J., T. Lasanta, P. Ruiz-Flano, L. Ortigosa (2007). Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil&Tillage Research, 93: 324-334.
  • Bubenzer, G.D. and L.D. Meyer. 1965. Simulation of rainfall and soils for laboratory research. Transaction of American Society of Agricultural Engineers, 8: 73-75p.
  • Canady, N.H., D.C. Flanagan (2004). Use of polyacrylamide to reduce runoff, soil loss and nutrient loss under lagoon effluent sprinkler irrigation. ASAE/CSAE Annual International Meeting, 1-4 August 2004, Ottawa, Ontario, CANADA.
  • Carlesso, R., R.B Spohr, F.L.F. Eltz, C.H. Flores (2011). Runoff estimation in Southern Brazil based on Smith’s modified model and the curve number method. Agricultural Water Management, 98 (6): 1020-1026.
  • Christiansen, J.E. 1942. Irrigation by sprinkling. University of California Agricultural Experiment Station Bulltenin No: 670.
  • Chouksey, A., V. Lambey, B.R. Nikam, S.P. Aggarwal (2017). Hydrological modelling using a rainfall simulator oven an experimental hillslope plot. Hydrology, 4: 17.
  • Corona, R., T. Wilson, L. ProD’Adderio, F. Poncu, N. Montaldo and J. Albertson. 2013. On the estimation of surface runoff through a new plot scale rainfall simulator in Sardinia, Italy. International Conference on Four Decades of Progress in Monitoring and Modelling of Processes in the Soil-Plant-Atmosphere System Location Naples, Italy, June 19-21, 2013, Procedra Environmental Sciences, (Edt: Romaro, N., Durso, G., Severno, G.) 19: 875-884.
  • Fiener, P., S.P. Seibert, K. Auerswald (2011). A compilation and meta-analysis of rainfall simulation data on arable soils. Journal of Hydrology, 409 (1-2): 395-406.
  • Fraunfeld, B., C. Truman (2003). Variable rainfall intensity effects on runoff and inter rill erosion from two coastal plain Ultisols in Georgia. Soil Science, 196 (2): 143-154.
  • Gabric, O., D. Prodanovic and J. Plavsic. 2015. The effects of oscilating nozzle on Cristiansen’s uniformity coefficient. Technical Gazette, 22 (6): 1415-1418.
  • Gabriels, D. and M. De Boodt, 1975. A rainfall simulator for erosion studies in the laboratory. Pedologie, 2: 80-86.
  • Gee, G.W. and J.V. Bauder. 1986. Particle Size Analysis. Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, 2nd Edition. No: 9, 383-411, Madison, Wisconsin, USA.
  • Humphry, J.B., T.C. Daniel, D.R. Edwards and A.N. Sharpley. 2002. A portable rainfall simulator for plot-scale runoff studies. Applied Engineering in Agriculture, 18 (2): 199-204.
  • Hunt, N. and R. Gilkes. 1992. Farm Monitoring Handbook. The University of Western Australia: Netherlands, WA.
  • Iserloh, T., J.B. Ries, J. Arnaez, C.B. Fayos, V. Butzen, A. Cerda, M.T. Echeverria, J.F. Galvez, W. Fister, C. Geibler, J.A. Gomez, H.G. Macpherson, N.J. Kuhn, R.
  • Lazaro, F.J. Leon, M.M. Mena, J.F.M Murillo, M. Marzen, M.D. Mingorance, L. Ortigasa, P. Peters, D. Regües, J.D.R. Sinoga, T. Scholten, M. Seeger, A.S. Benet, R. Wengel, S. Wirtz. 2000. European small portable rainfall simulators: A comparasion of rainfall characteristics. Catena, 110: 100-112.
  • Kemper, W.D. and R.C. Rosenau. 1986. Aggregate Stability and Size Distribution. In A. Klute et al., Methods of Soil Analysis, Part 1. Physical and Minerological Methods, 425-442, 2nd Edition, Agronomy Monograph, Soil Science of America, Madison, USA.
  • Lal, R. 1988. Soil Erosion Research Methods. Soil and Water Conservation Society, Iowa.
  • Mhaske, S.N., K. Pathak, A. Basak (2019). A comprehensive design of rainfall simulator for the assessment of soil erosion in the laboratory. Catena, 172: 408-420.
  • Middleton, H.E. 1930. Properties of Soil Which Influence Soil Erosion. United States of Depertment of Agricultural Technician Bultenin, No: 178.
  • Mutchler, C. K. and W. C. Moldenhauer, 1963. Applicator for laboratory rainfall simulator. Transaction of the ASAE, 6:220-222.
  • Neal, J.H. 1938. The Effect of The Degree of Slope and Rainfall Characteristics on Runoff and Soil Erosion. Agricultural of Experiments of Strategies Research Bultenin, No: 280.
  • Nelson, R.E. 1982. Carbonate and Gypsum. Methods of Soil Analysis, Part 2, 2nd Edition. No:9, 181-197, Madison, Wisconsin, USA.
  • Nelson, D.W. and L.E. Sommers. 1982. Total Carbon, Organic Carbon and Organic Matter. Methods of Soil Analysis. Part 2, Chemical and Microbiological Properties, 2nd Edition, No:9, 539-579, Madison, Wisconsin, USA.
  • Pall, R., W.T. Dickinson, D. Beals and R. Mc Girr. 1983. Development and calibration of a rainfall simulator. Canadian Agricultural Engineering, 25: 181-187.
  • Pansu, M. and J. Gautheyroux. 2006. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods, Springer Verlag, Berlin.
  • Perez, L.F.J., L, De Castro, A. Delgado (2010). A comprasion of two variable intensity rainfall simulators for runoff studies. Soil&Tillage Research, 107: 11-16.
  • Perez, R.R., M.J. Marques, L. Jimenez, S.G. Ormaechea, R. Brenez. 2004. Testing of rainfall simulator nozzles for suitability within soil erosion plots. Land Degradation and Rehabilition: Dryland Ecosystems. Papers presented at the 4th International Conference on Land Degradation, Cartagena, Murcia, Spain, 12-17 September 2004, 2009: 191-199.
  • Sausa, J.S.F. and E.Q. Siqueira. 2011. Development and Calibration of a Rainfall Simulator for Urban Hydrology Research. 12th International Conference on Urban Drainage, Porto Alegre, Brasil, 11-16 September 2011.
  • Schlichting, E. und H.P. Blume. 1966. Bodenkundliches Prakticum. Verlag Paul Paney, Hamburg.
  • Shi, P., C. Arter, X. Liu, M Keller, R. Schulin. 2017. Soil aggregate stability and size-selective sediment transport with surface runoff as affected by organic residue amentment. Science of the Total Environment, 607-608: 95-102.
  • Sönmez, K. 1994.Toprak Koruma. Atatürk Üniversitesi Ziraat Fakültesi Yayınları No: 169.
  • Taysun, A. 1985. Doğal ve Yapma Yağışın Karşılaştırılması Yağış Benzeticiler ve Damla Düşme Hızı Tayin Aletleri. T.C. Tarım Orman ve Köyişleri Bakanlığı Köy Hizmetleri Genel Müdürlüğü Menemen Bölge Topraksu Araştırma Enstitüsü Müdürlüğü, Yayın No:119:13, Menemen, İzmir, 55 sayfa.
  • Taysun, A. 1986. Gediz Havzasında Rendzina Tarım Topraklarında Yapay Yağmurlayıcı Yardımıyla Taşlar, Bitki Artıkları ve Polivinilalkolün (PVA) Toprak Özellikleri ile Birlikte Erozyona Etkileri Üzerine Araştırmalar. Ege Üniversitesi Ziraat Fakültesi, Yayın No: 474.
  • Taysun, A. 1989. Toprak ve Su Korunumu. Ege Üniversitesi Ziraat Fakültesi, Teksir No: 92-III, Bornova.
  • Tossell, R.W., W.T. Dickinson, R.P. Rudra and G.J. Wall. 1987. A portable rainfall simulator. Canadian Agricultural Engineering, 29: 155-162.
  • Truman, C.C., T.L. Potter, R.C. Nuti. 2011. Quantifying variable rainfall intensity events on runoff and sediment losses. Water Resources Management, WIT Transactions on Ecology and the Environment, 145: 275-283.
  • Yönter, G. ve H. Uysal. 2016. Tütün atığının (serme ve karıştırma) tın bünyeli bir toprağın bazı erozyon parametreleri ve kimyasal özellikleri üzerine etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 53 (1):11-17.
  • Yönter, G. 2016. Erozyon araştırmalarında kullanılan Veejet tipi memelerin yağış yoğunluğu ve Christiansen eş su dağılım katsayısına etkileri üzerine bir çalışma. Ege Üniversitesi Ziraat Fakültesi Dergisi, 53 (2):192-202.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Marius H. Houndonougbo 0000-0003-3293-6885

Gökçen Yönter 0000-0003-0823-1893

Yayımlanma Tarihi 30 Haziran 2020
Gönderilme Tarihi 12 Nisan 2019
Kabul Tarihi 16 Ocak 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Houndonougbo, M. H., & Yönter, G. (2020). Farklı Basınçlarda Veejet ve Fulljet Tipi Başlıkların Yağış Şiddeti, Christiansen Katsayısı, Yüzey Akış ve Toprak Kayıpları Üzerine Etkilerinin Kıyaslanması Üzerine Bir Ön Çalışma. Journal of Agriculture Faculty of Ege University, 57(2), 209-218. https://doi.org/10.20289/zfdergi.553142

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.