Araştırma Makalesi
BibTex RIS Kaynak Göster

Poultry Manure Biochar Reduces Arsenic Induced Oxidative Stress and Arsenic Levels in Rice Plants

Yıl 2017, Cilt: 31 Sayı: 1, 103 - 113, 19.06.2017

Öz

The effectiveness of biochar on mitigating excessive arsenic (As) accumulation by rice plants was investigated. The treatments were as follows: control, 60 mg kg-1 As (As applied from NaAsO2) and 60 mg kg-1 As + 20 g kg-1 biochar. Biochar application to As contaminated soil enhanced the dry weight of rice plants. Dry weight of rice plants decreased by 60 mg kg-1 As treatment compared to control. Application of As increased As concentration of rice plants while 20 g kg-1 poultry manure biochar supply to the As contaminated soil significantly decreased the As concentration. Arsenic toxicity induced H2O2 accumulation however the application of biochar reduced H2O2 concentration of plants. Catalase (CAT) and ascorbate peroxidase (APX) activities significantly increased by biochar. Arsenic significantly increased N, S and Zn while decreased Cl, Fe, Cu and Mn concentration of plants. Biochar treatments significantly increased N, P, K and S concentrations of the plants as compared to control and As treated plants. It can be concluded that poultry manure biochar can be used for the prevention of As accumulation in rice plants. 

Kaynakça

  • Beesley. L., E. Moreno-Jimenez and J.L. Gomez-Eyles. 2010. Effects of biochar and green waste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution, 158: 2282-2287.
  • Beesley, L., and M. Marmiroli. 2011. The immobilization and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution,159: 474-480.
  • Beesley, L.. E.D. Jiménez, J.L. Gomez-Eyles, E. Harris, B. Robinson and T. Sizmur. 2011. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159: 3269-3282
  • Beesley, L., M. Marmiroli, L. Pagano, V. Pigoni, G. Fellet, T. Fresno, T. Vamerali, M. Bandiera and N. Marmiroli. 2013. Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Science of the Total Environment, 454-455: 598-603.
  • Beesley, L., O.S. Inneh, G.J. Norton, E. Moreno-Jimenez, T. Pardo, R. Clemente and J.J.C. Dawson. 2014. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environmental Pollution, 186: 195-202.
  • Cakmak, I., D. Strbac and H. Marschner. 1993. Activities of hydrogen peroxide-scavenging enzymes in germinated wheat seeds. Journal of Experimental Botany, 44: 127-132.
  • Cao, X., L. Ma, Y. Liang, B. Gao and W. Harris 2011. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environmental Science & Techonology, 45: 4884-4889.
  • Chuparina, E.V. and T.N. Gunicheva. 2003. Nondestructive X-ray fluorescence determination of some elements in plant material. Journal of Analytical Chemistry, 58: 856-861.
  • Das, D.K., P. Sur and K. Das. 2008. Mobilization of arsenic in soils and in rice (Oryza sativa L.) plants affected by organic matter and zinc application in irrigation water contaminated with arsenic. Plant Soil and Environment, 54: 30-37.
  • Fayiga, A.O., L.Q. Maa and B. Rathinasabapathi. 2008. Effects of nutrients on arsenic accumulation by arsenic hyper accumulator Pteris vittata L. Environmental and Experimantal Botany, 62: 231-237.
  • Fellet, G., L. Marchiol, G. Delle Vedove and A. Peressotti. 2011. Application of biochar on mine tailings: Effects and perspectives for land reclamation. Chemosphere, 83: 1262-1267.
  • Giannopolitis, C.N. and S.K. Ries. 1977. Superoxide dismutase purification and quantitative relationship with water soluble protein in seedling. Plant Physiology, 59: 315-318.
  • Gong, H., X. Zhu, K. Chen, S. Wang and C. Zhan. 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169:313-321.
  • Gregory, S.J., C.W.N. Anderson, M. Arbestain, P.J. Biggs, A.R.D. Ganley, J.M. O’Sullivan and M.T. McManus. 2015. Biochar in co-contaminated soil manipulates arsenic solubility and microbiological community structure, and promotes organochlorine degradation. PLOS One. 2015 doi: 10.1371/journal.pone.0125393.
  • Gunes, A., A. Inal, E.G. Bagci and D.J. Pilbeam. 2007. Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant and Soil, 290: 103:114.
  • Gunes, A., D.J. Pilbeam and A. Inal. 2009. Effect of arsenic-phosphorus interaction on arsenicinduced oxidative stress in chickpea plants. Plant and Soil, 314: 211-220.
  • Gunes, A., A. Inal, E.G. Bagci and Y.K. Kadioglu. 2010. Combined effect of arsenic and phosphorus on mineral element concentrations of sunflower. Communications in Soil Science and Plant Analysis, 41: 361-372.
  • Gunes, A., A. Inal, M.B. Taskin, O. Sahin, E.C. Kaya and A. Atakol. 2014. Effect of phosphorusenriched biochar and poultry manure on growth and mineral composition of lettuce (Lactuca sativa L. cv.) grown in alkaline soil. Soil Use and Management, 30: 182-188.
  • Hartley, W. and N.W. Lepp. 2008. Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Science and Total Environment, 390: 35-44.
  • Inal, A., A. Gunes, O. Sahin, M.B. Taskin and E.C. Kaya. 2015. Impacts of biochar and processed poultry manure, applied to a calcareous soil, on the growth of bean and maize. Soil Use and Management, 31: 106-113.
  • Ivanova, J., R. Djingova and I. Kuleff. 1999. Possibilities of ED-XRF with radionuclide sources for analysis of plants. Journal of Radioanalytical and Nuclear Chemistry, 242: 569-575.
  • Lehmann, J., M.C., Rilling, J. Thies, C.A. Masiello, W.C. Hockaday and D. Crowley. 2011. Biochar effects on soil biota-A review. Soil Biology and Biochemistry, 43: 1812-1836.
  • Ma, R., Z. Shen, J. Wu, Z. Tang, Q. Shen, and F.J. Zhao 2014. Impact of agronomic practices on arsenic accumulation and speciation in rice grain. Environmental Pollution, 194: 217-223.
  • Meharg, A.A. 1994. Integrated tolerance mechanisms-constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant, Cell & Environment, 17: 989-993.
  • Meharg, A.A. and J. Hartley-Whitaker. 2002. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist, 154: 29-43.
  • Meharg, A.A. and L. Jardine. 2003. Arsenite transport into paddy rice (Oryza sativa) roots. New Phytologist, 157: 39-44.
  • Mishra, A. and M.A. Choudhuri. 1999. Effect of salicylic acid on heavy-metal induced membrane deterioration mediated by lipoxygenase in rice. Biologia Plantarum, 42: 409-415.
  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7: 405-410.
  • Mohan, D., C.U. Pittmam, M. Bricka, F. Smith, B. Yancey, J. Mohammad, P.H. Steele, M.F. Alexandre-Franco, V. Gomez-Serrano and H. Gong. 2007. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of Colloid and Interface Science, 310: 57-73.
  • Mukherjee, S.P. and M.A. Choudhuri. 1983. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiologia Plantarum, 58: 166-170.
  • Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22: 867-880.
  • Park, H.J., G.K. Choppala, N.S. Bolan, J.W. Chung and T. Chuasavathi. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348: 439-451.
  • Päivöke, A.E.A. and L.K. Simola. 2001. Arsenate toxicity to Pisum sativum: mineral nutrients, chlorophyll content, and phytase activity. Ecotoxicology and Environmental Safety, 49: 111-121.
  • Sairam, R.K., G.C. Srivastava, S. Agarwal and R.C. Meena. 2005. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Physiologia Plantarum, 49: 85-91.
  • Stephens, W.E. and A. Calder. 2004. Analysis of non-organic elements in plant foliage using polarised X-ray fluorescence spectrometry. Analytica Chimica Acta, 527: 89–96.
  • Stoeva, N., M. Berova and Z. Zlatev 2003. Physiological response of maize to arsenic contamination. Physiologia Plantarum, 47: 449–452.
  • Su, Y.H., S.P. McGrath and F.J. Zhao. 2010. Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant and Soil, 328: 27-34.
  • Takahashi, Y., R. Minamikawa, K.H. Hattori, K. Kurishima, N. Kihou and K. Yuita. 2004. Arsenic behavior in paddy fields during the cycle of flooded and nonflooded periods. Environmental Science & Technology, 38: 1038-1044.
  • Tu, C. and L.Q. Ma. 2003. Effects of arsenate and phosphate on their accumulation by an arsenichyper accumulator Pteris vittata L. Plant and Soil, 249: 373-382.
  • Tu, C., L. Ma, G.E. MacDonald and B. Bondad. 2004. Effects of arsenic species and phosphorous on arsenic absorption, arsenate reduction and thiol formation in excised parts of Pteris vittata L. Environmental and Experimental Botany, 51: 121- 131.
  • Ullrich-Eberius, C.I., A. Sanz and A.J. Novacky. 1989. Evaluation of arsenate- and vanadateassociated changes of electrical membrane potential and phosphate transport in Lemna gibba-G1. Journal of Experimental Botany, 40: 119-128.
  • Zhao, F.J., J.F. Ma, A.A. Meharg, and S.P. McGrath. 2009. Arsenic uptake and metabolism in plants. New Phytologist, 181: 777-794.
  • Woolson, E.A. 1983. Emission, cycling and effects of arsenic in soil ecosystems, 51-120, In B. A. Fowler, ed. Biological and environmental effects of arsenic, Vol. 6. Elsevier Science Publisher B. V., Amsterdam, New York, Oxford.
  • Xu, X.Y., S. McGrath, A. Meharg, and F.J. Zhao. 2008. Growing rice aerobically markedly decreases arsenic accumulation. Environmental Science & Technology, 42: 5574-5579.
  • Yu, Z., L. Zhou, Y. Huang, Z. Song and W. Qiu. 2015. Effects of a manganese oxide-modified biochar composite on adsorption of arsenic in red soil. Journal of Environmental Management, 163: 155-62.

Tavuk Gübresi Biyokömürünün Çeltik Bitkisi Arsenik Alımı ve Arsenik Düzeyleri Üzerine Etkisi ve Oksidatif Stres İle İlişkisi

Yıl 2017, Cilt: 31 Sayı: 1, 103 - 113, 19.06.2017

Öz

Bu çalışmada, çeltik bitkisinde arsenik (As) birikiminin azaltılması üzerine biyokömürün etkisi araştırılmıştır. Uygulamalar sırasıyla; kontrol, 60 mg kg-1 As (As NaAsO2’den uygulanmıştır.) ve 60 mg kg-1 As + 20 g kg-1 biyokömür şeklindedir. Biyokömür uygulamasına bağlı olarak, As ile kirlenmiş toprakta yetiştirilen çeltik bitkisinin kuru ağırlığı artış göstermiştir. 60 mg kg-1 As uygulaması ile çeltik bitkisinin kuru ağırlığı kontrole göre azalmıştır. As uygulaması ile çeltik bitkisinin As konsantrasyonu artarken, 20 g kg-1 biyokömür uygulaması ile bitkinin As konsantrasyonunu önemli düzeyde azaltmıştır. Arsenik toksisitesi ile bitkide H2O2 birikimi artmış, ilave edilen biyokömür uygulamasına bağlı olarak H2O2 konsantrasyonu azalmıştır. Katalaz (CAT) ve askorbat peroksidaz (APX) aktiviteleri biyokömür uygulaması ile önemli düzeyde artmıştır. Arsenik uygulamasına bağlı olarak çeltik bitkisinin N, S ve Zn konsantrasyonlarını artarken, Cl, Fe, Cu ve Mn konsantrasyonlarını azalmıştır. Kontrol ve As uygulamalarıyla karşılaştırıldığında, biyokömür uygulamasının bitki N, P, K ve S konsantrasyonlarını önemli düzeyde arttırdığı belirlenmiştir. Çeltik bitkisinde As birikimini/toksisitesini önlemek için tavuk gübresinden elde edilen biyokömürün kullanılabileceği sonucuna varılmıştır.

Kaynakça

  • Beesley. L., E. Moreno-Jimenez and J.L. Gomez-Eyles. 2010. Effects of biochar and green waste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution, 158: 2282-2287.
  • Beesley, L., and M. Marmiroli. 2011. The immobilization and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution,159: 474-480.
  • Beesley, L.. E.D. Jiménez, J.L. Gomez-Eyles, E. Harris, B. Robinson and T. Sizmur. 2011. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159: 3269-3282
  • Beesley, L., M. Marmiroli, L. Pagano, V. Pigoni, G. Fellet, T. Fresno, T. Vamerali, M. Bandiera and N. Marmiroli. 2013. Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Science of the Total Environment, 454-455: 598-603.
  • Beesley, L., O.S. Inneh, G.J. Norton, E. Moreno-Jimenez, T. Pardo, R. Clemente and J.J.C. Dawson. 2014. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environmental Pollution, 186: 195-202.
  • Cakmak, I., D. Strbac and H. Marschner. 1993. Activities of hydrogen peroxide-scavenging enzymes in germinated wheat seeds. Journal of Experimental Botany, 44: 127-132.
  • Cao, X., L. Ma, Y. Liang, B. Gao and W. Harris 2011. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environmental Science & Techonology, 45: 4884-4889.
  • Chuparina, E.V. and T.N. Gunicheva. 2003. Nondestructive X-ray fluorescence determination of some elements in plant material. Journal of Analytical Chemistry, 58: 856-861.
  • Das, D.K., P. Sur and K. Das. 2008. Mobilization of arsenic in soils and in rice (Oryza sativa L.) plants affected by organic matter and zinc application in irrigation water contaminated with arsenic. Plant Soil and Environment, 54: 30-37.
  • Fayiga, A.O., L.Q. Maa and B. Rathinasabapathi. 2008. Effects of nutrients on arsenic accumulation by arsenic hyper accumulator Pteris vittata L. Environmental and Experimantal Botany, 62: 231-237.
  • Fellet, G., L. Marchiol, G. Delle Vedove and A. Peressotti. 2011. Application of biochar on mine tailings: Effects and perspectives for land reclamation. Chemosphere, 83: 1262-1267.
  • Giannopolitis, C.N. and S.K. Ries. 1977. Superoxide dismutase purification and quantitative relationship with water soluble protein in seedling. Plant Physiology, 59: 315-318.
  • Gong, H., X. Zhu, K. Chen, S. Wang and C. Zhan. 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169:313-321.
  • Gregory, S.J., C.W.N. Anderson, M. Arbestain, P.J. Biggs, A.R.D. Ganley, J.M. O’Sullivan and M.T. McManus. 2015. Biochar in co-contaminated soil manipulates arsenic solubility and microbiological community structure, and promotes organochlorine degradation. PLOS One. 2015 doi: 10.1371/journal.pone.0125393.
  • Gunes, A., A. Inal, E.G. Bagci and D.J. Pilbeam. 2007. Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant and Soil, 290: 103:114.
  • Gunes, A., D.J. Pilbeam and A. Inal. 2009. Effect of arsenic-phosphorus interaction on arsenicinduced oxidative stress in chickpea plants. Plant and Soil, 314: 211-220.
  • Gunes, A., A. Inal, E.G. Bagci and Y.K. Kadioglu. 2010. Combined effect of arsenic and phosphorus on mineral element concentrations of sunflower. Communications in Soil Science and Plant Analysis, 41: 361-372.
  • Gunes, A., A. Inal, M.B. Taskin, O. Sahin, E.C. Kaya and A. Atakol. 2014. Effect of phosphorusenriched biochar and poultry manure on growth and mineral composition of lettuce (Lactuca sativa L. cv.) grown in alkaline soil. Soil Use and Management, 30: 182-188.
  • Hartley, W. and N.W. Lepp. 2008. Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Science and Total Environment, 390: 35-44.
  • Inal, A., A. Gunes, O. Sahin, M.B. Taskin and E.C. Kaya. 2015. Impacts of biochar and processed poultry manure, applied to a calcareous soil, on the growth of bean and maize. Soil Use and Management, 31: 106-113.
  • Ivanova, J., R. Djingova and I. Kuleff. 1999. Possibilities of ED-XRF with radionuclide sources for analysis of plants. Journal of Radioanalytical and Nuclear Chemistry, 242: 569-575.
  • Lehmann, J., M.C., Rilling, J. Thies, C.A. Masiello, W.C. Hockaday and D. Crowley. 2011. Biochar effects on soil biota-A review. Soil Biology and Biochemistry, 43: 1812-1836.
  • Ma, R., Z. Shen, J. Wu, Z. Tang, Q. Shen, and F.J. Zhao 2014. Impact of agronomic practices on arsenic accumulation and speciation in rice grain. Environmental Pollution, 194: 217-223.
  • Meharg, A.A. 1994. Integrated tolerance mechanisms-constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant, Cell & Environment, 17: 989-993.
  • Meharg, A.A. and J. Hartley-Whitaker. 2002. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist, 154: 29-43.
  • Meharg, A.A. and L. Jardine. 2003. Arsenite transport into paddy rice (Oryza sativa) roots. New Phytologist, 157: 39-44.
  • Mishra, A. and M.A. Choudhuri. 1999. Effect of salicylic acid on heavy-metal induced membrane deterioration mediated by lipoxygenase in rice. Biologia Plantarum, 42: 409-415.
  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7: 405-410.
  • Mohan, D., C.U. Pittmam, M. Bricka, F. Smith, B. Yancey, J. Mohammad, P.H. Steele, M.F. Alexandre-Franco, V. Gomez-Serrano and H. Gong. 2007. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of Colloid and Interface Science, 310: 57-73.
  • Mukherjee, S.P. and M.A. Choudhuri. 1983. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiologia Plantarum, 58: 166-170.
  • Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22: 867-880.
  • Park, H.J., G.K. Choppala, N.S. Bolan, J.W. Chung and T. Chuasavathi. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348: 439-451.
  • Päivöke, A.E.A. and L.K. Simola. 2001. Arsenate toxicity to Pisum sativum: mineral nutrients, chlorophyll content, and phytase activity. Ecotoxicology and Environmental Safety, 49: 111-121.
  • Sairam, R.K., G.C. Srivastava, S. Agarwal and R.C. Meena. 2005. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Physiologia Plantarum, 49: 85-91.
  • Stephens, W.E. and A. Calder. 2004. Analysis of non-organic elements in plant foliage using polarised X-ray fluorescence spectrometry. Analytica Chimica Acta, 527: 89–96.
  • Stoeva, N., M. Berova and Z. Zlatev 2003. Physiological response of maize to arsenic contamination. Physiologia Plantarum, 47: 449–452.
  • Su, Y.H., S.P. McGrath and F.J. Zhao. 2010. Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant and Soil, 328: 27-34.
  • Takahashi, Y., R. Minamikawa, K.H. Hattori, K. Kurishima, N. Kihou and K. Yuita. 2004. Arsenic behavior in paddy fields during the cycle of flooded and nonflooded periods. Environmental Science & Technology, 38: 1038-1044.
  • Tu, C. and L.Q. Ma. 2003. Effects of arsenate and phosphate on their accumulation by an arsenichyper accumulator Pteris vittata L. Plant and Soil, 249: 373-382.
  • Tu, C., L. Ma, G.E. MacDonald and B. Bondad. 2004. Effects of arsenic species and phosphorous on arsenic absorption, arsenate reduction and thiol formation in excised parts of Pteris vittata L. Environmental and Experimental Botany, 51: 121- 131.
  • Ullrich-Eberius, C.I., A. Sanz and A.J. Novacky. 1989. Evaluation of arsenate- and vanadateassociated changes of electrical membrane potential and phosphate transport in Lemna gibba-G1. Journal of Experimental Botany, 40: 119-128.
  • Zhao, F.J., J.F. Ma, A.A. Meharg, and S.P. McGrath. 2009. Arsenic uptake and metabolism in plants. New Phytologist, 181: 777-794.
  • Woolson, E.A. 1983. Emission, cycling and effects of arsenic in soil ecosystems, 51-120, In B. A. Fowler, ed. Biological and environmental effects of arsenic, Vol. 6. Elsevier Science Publisher B. V., Amsterdam, New York, Oxford.
  • Xu, X.Y., S. McGrath, A. Meharg, and F.J. Zhao. 2008. Growing rice aerobically markedly decreases arsenic accumulation. Environmental Science & Technology, 42: 5574-5579.
  • Yu, Z., L. Zhou, Y. Huang, Z. Song and W. Qiu. 2015. Effects of a manganese oxide-modified biochar composite on adsorption of arsenic in red soil. Journal of Environmental Management, 163: 155-62.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Ozge Sahın

Mehmet Burak Taskın Bu kişi benim

Emre Can Kaya Bu kişi benim

Havva Taskın Bu kişi benim

Yayımlanma Tarihi 19 Haziran 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 31 Sayı: 1

Kaynak Göster

APA Sahın, O., Taskın, M. B., Kaya, E. C., Taskın, H. (2017). Tavuk Gübresi Biyokömürünün Çeltik Bitkisi Arsenik Alımı ve Arsenik Düzeyleri Üzerine Etkisi ve Oksidatif Stres İle İlişkisi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 31(1), 103-113.
AMA Sahın O, Taskın MB, Kaya EC, Taskın H. Tavuk Gübresi Biyokömürünün Çeltik Bitkisi Arsenik Alımı ve Arsenik Düzeyleri Üzerine Etkisi ve Oksidatif Stres İle İlişkisi. Uludag Üniv. Ziraat Fak. Derg. Haziran 2017;31(1):103-113.
Chicago Sahın, Ozge, Mehmet Burak Taskın, Emre Can Kaya, ve Havva Taskın. “Tavuk Gübresi Biyokömürünün Çeltik Bitkisi Arsenik Alımı Ve Arsenik Düzeyleri Üzerine Etkisi Ve Oksidatif Stres İle İlişkisi”. Uludağ Üniversitesi Ziraat Fakültesi Dergisi 31, sy. 1 (Haziran 2017): 103-13.
EndNote Sahın O, Taskın MB, Kaya EC, Taskın H (01 Haziran 2017) Tavuk Gübresi Biyokömürünün Çeltik Bitkisi Arsenik Alımı ve Arsenik Düzeyleri Üzerine Etkisi ve Oksidatif Stres İle İlişkisi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi 31 1 103–113.
IEEE O. Sahın, M. B. Taskın, E. C. Kaya, ve H. Taskın, “Tavuk Gübresi Biyokömürünün Çeltik Bitkisi Arsenik Alımı ve Arsenik Düzeyleri Üzerine Etkisi ve Oksidatif Stres İle İlişkisi”, Uludag Üniv. Ziraat Fak. Derg., c. 31, sy. 1, ss. 103–113, 2017.
ISNAD Sahın, Ozge vd. “Tavuk Gübresi Biyokömürünün Çeltik Bitkisi Arsenik Alımı Ve Arsenik Düzeyleri Üzerine Etkisi Ve Oksidatif Stres İle İlişkisi”. Uludağ Üniversitesi Ziraat Fakültesi Dergisi 31/1 (Haziran 2017), 103-113.
JAMA Sahın O, Taskın MB, Kaya EC, Taskın H. Tavuk Gübresi Biyokömürünün Çeltik Bitkisi Arsenik Alımı ve Arsenik Düzeyleri Üzerine Etkisi ve Oksidatif Stres İle İlişkisi. Uludag Üniv. Ziraat Fak. Derg. 2017;31:103–113.
MLA Sahın, Ozge vd. “Tavuk Gübresi Biyokömürünün Çeltik Bitkisi Arsenik Alımı Ve Arsenik Düzeyleri Üzerine Etkisi Ve Oksidatif Stres İle İlişkisi”. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, c. 31, sy. 1, 2017, ss. 103-1.
Vancouver Sahın O, Taskın MB, Kaya EC, Taskın H. Tavuk Gübresi Biyokömürünün Çeltik Bitkisi Arsenik Alımı ve Arsenik Düzeyleri Üzerine Etkisi ve Oksidatif Stres İle İlişkisi. Uludag Üniv. Ziraat Fak. Derg. 2017;31(1):103-1.