Araştırma Makalesi
BibTex RIS Kaynak Göster

Molecular Characterization of Zenit×B27 Durum Wheat Population Using SSR Markers

Yıl 2023, , 78 - 86, 30.12.2023
https://doi.org/10.33724/zm.1375967

Öz

In this study, 11 durum wheat genotypes obtained from Zenit and B27 parents used to determine some disease and quality related alleles using eight DNA markers durum wheat genotypes. As a result of molecular screening, 8 DNA markers produced 25 alleles and the average polymorphism information content (PIC) value of the DNA markers used in the study was 0.9775. The highest polymorphism information content value was 0.99, while the lowest polymorphism information content value was 0.95. In the dendrogram created by using 25 alleles produced by DNA markers in the study, two main groups were formed according to the parents. Zenit×B27-7, Zenit×B27-9 and Zenit×B27-11 and Zenit×B27-5, Zenit×B27-6, Zenit×B27-8 and Zenit×B27-10 cross combinations were found 100% similar. According to the results of the research, genes belonging to Waxy (Wx-A1) trait were determined in Zenit×B27_1, Zenit×B27_2 and Zenit×B27_3 genotypes, while the gene region belonging to high protein (Gpc-B1) was found in Zenit×B27_3 and Zenit×B27_5 genotypes.

Kaynakça

  • Afzal, M., Alghamdi, S. S., Migdadi, H. M., Khan, M. A., & Farooq, M. (2018). Morphological and Molecular genetic diversity analysis of chickpea genotypes. Int. J. Agric. Biol, 20, 1062-1070.
  • Alghamdi, S. S., Alfifi, S. A., Migdadi, H. M., Al-Rowaily, S. L., El-Harty, E. H., & Farooq, M. (2017). Morphological and genetic diversity of cereal genotypes in kingdom of Saudi Arabia. International Journal of Agriculture and Biology, 19(4), 601-609.
  • Aydemir, G., Dumlupınar, Z., Yüce, İ., Narlı, T., Sunulu, S., & Güngör, H. (2020). Evaluation of F5 Individuals Obtained from B28× Kunduru-1149 Reciprocal Cross Population by Functional Markers. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(4), 1005-1011.
  • Bansal, U. K., Muhammad, S., Forrest, K. L., Hayden, M. J., & Bariana, H. S. (2015). Mapping of a new stem rust resistance gene Sr49 in chromosome 5B of wheat. Theoretical and applied genetics, 128, 2113-2119.
  • Bulunuz Palaz, E., Demirel, F., Adali, S., Demirel, S., & Yilmaz, A. (2023). Genetic relationships of salep orchid species and gene flow among Serapias vomeracea× Anacamptis morio hybrids. Plant Biotechnology Reports, 17(2), 315-327.
  • Butow, B. J., Ma, W., Gale, K. R., Cornish, G. B., Rampling, L., Larroque, O., ... & Békés, F. (2003). Molecular discrimination of Bx7 alleles demonstrates that a highly expressed high-molecular-weight glutenin allele has a major impact on wheat flour dough strength. Theoretical and Applied Genetics, 107, 1524-1532.
  • Büyükakkaşlar, M., Yüce, İ., Başkonuş, T., Dokuyucu, T., Akkaya, A., & Dumlupınar, Z. (2020). B27× Ege 88 resiprokal melez popülasyonunda F4 bireylerin allel spesifik markörlerle değerlendirilmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(6), 1647-1655.
  • Demirel, F. (2020). Genetic diversity of Emmer wheats using iPBS markers. Avrupa Bilim ve Teknoloji Dergisi, (20), 640-646.
  • Dice, L.R. (1945). Measures of the amount of ecologic association between species. Ecology, 26: 297-302. Distelfeld, A., Uauy, C., Fahima, T., & Dubcovsky, J. (2006). Physical map of the wheat high‐grain protein content gene Gpc‐B1 and development of a high‐throughput molecular marker. New Phytologist, 169(4), 753-763.
  • Gürcan, K., Demirel, F., Tekin, M., Demirel, S., & Akar, T. (2017). Molecular and agro-morphological characterization of ancient wheat landraces of Turkey. BMC plant biology, 17, 1-10.
  • Heun, M., Schafer-Pregl, R., Klawan, D., Castagna, R., Accerbi, M., Borghi, B., & Salamini, F. (1997). Site of einkorn wheat domestication identified by DNA fingerprinting. Science, 278(5341), 1312-1314.
  • Karakaya, O., Yaman, M., Balta, F., Yilmaz, M., & Balta, M. F. (2023). Assessment of genetic diversity revealed by morphological traits and ISSR markers in hazelnut germplasm (Corylus avellana L.) from Eastern Black Sea Region, Turkey. Genetic Resources and Crop Evolution, 70(2), 525-537.
  • Kim, H. S., & Ward, R. W. (2000). Patterns of RFLP-based genetic diversity in germplasm pools of common wheat with different geographical or breeding program origins. Euphytica, 115, 197-208.
  • Koçyiğit, B.K., Yüce, İ., Başkonuş, T., Dokuyucu, T., Akkaya, A., & Dumlupinar, Z. (2021). Evaluation of F4 individuals belong to Seri 82 × B35 bread wheat (Triticum aestivum L.) cross population using functional DNA markers. KSU Journal of Agriculture and Nature, 24(3), 586-593.
  • Maryami, Z., Fazeli, A., & Mehrabi, A. A. (2014). Investigation of diversity of Waxy-A1 gene using amplification in different spices in A genome wheat's. Advances in Environmental Biology, 8(7), 2004-2007.
  • Najaphy, A., Parchin, R. A., Farshadfar, E., & Farshadfar, E. (2012). Comparison of phenotypic and molecular characterizations of some important wheat cultivars and advanced breeding lines. Australian Journal of Crop Science, 6(2), 326-332.
  • Oliver, R. E., Obert, D. E., Hu, G., Bonman, J. M., O’Leary-Jepsen, E., & Jackson, E. W. (2010). Development of oat-based markers from barley and wheat microsatellites. Genome, 53(6), 458-471.
  • Robbana, C., Kehel, Z., Ben Naceur, M. B., Sansaloni, C., Bassi, F., & Amri, A. (2019). Genome-wide genetic diversity and population structure of Tunisian durum wheat landraces based on DArTseq technology. International Journal of Molecular Sciences, 20(6), 1352.
  • Röder, M. S., Plaschke, J., König, S. U., Börner, A., Sorrells, M. E., Tanksley, S. D., & Ganal, M. W. (1995). Abundance, variability and chromosomal location of microsatellites in wheat. Molecular and General Genetics MGG, 246, 327-333.
  • Rohlf, F. J. (2005). NTSYS-pc: numerical taxonomy and multivariate analysis system version 2.2. Setauket. Sajjad, M., Khan, S. H., & Shahzad, M. (2018). Patterns of allelic diversity in spring wheat populations by SSR-markers. Cytology and Genetics, 52, 155-160.
  • Salem, K. F., Röder, M. S., & Börner, A. (2015). Assessing genetic diversity of Egyptian hexaploid wheat (Triticum aestivum L.) using microsatellite markers. Genetic Resources and Crop Evolution, 62, 377-385.
  • Shariflou, M. R., & Sharp, P. J. (1999). A polymorphic microsatellite in the 3’end of ‘waxy’genes of wheat, Triticum aestivum. Plant Breeding, 118(3), 275-277.
  • Tsonev, S., Christov, N. K., Mihova, G., Dimitrova, A., & Todorovska, E. G. (2021). Genetic diversity and population structure of bread wheat varieties grown in Bulgaria based on microsatellite and phenotypic analyses. Biotechnology & Biotechnological Equipment, 35(1), 1520-1533.
  • Uzun, A., Pinar, H., Yaman, M., Yigit, M. A., Cakiroglu, Y., Karakaya, A., Uysal, M., Ozturk, G., Yilmaz, K. U., Gurcan, K., & Ercisli, S. (2022). Identification of genetic diversity in wild pear (Pyrus elaeagrifolia Pall.) Genotypes collected from different regions of turkey with SSR marker system. Genetika, 54(1), 109-118.
  • Weir, B. S. (1996). Genetik Veri Analizi II, 2. baskı. Sinauer Associates Inc, Sunderland, MA.
  • Yıldız, E., Pinar, H., Uzun, A., Yaman, M., Sumbul, A., & Ercisli, S. (2021). Identification of genetic diversity among Juglans regia L. genotypes using molecular, morphological, and fatty acid data. Genetic Resources and Crop Evolution, 68, 1425-1437.
  • Yüce, İ., & Dumlupınar, Z. (2023). Evaluation of agronomic traits and allele specific DNA markers related to some disease and quality traits in mutant Karakılçık M4 individuals. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26(4), 861-869.

Zenit×B27 Makarnalık Buğday Popülasyonunun SSR Markörleriyle Moleküler Karakterizasyonu

Yıl 2023, , 78 - 86, 30.12.2023
https://doi.org/10.33724/zm.1375967

Öz

Araştırmada, Zenit ile B27 yerel makarnalık buğday çeşidi ve bu çeşitlerin melezlenmesi sonucunda elde edilen 11 adet makarnalık buğday genotipi, 8 adet allel spesifik DNA markörü kullanılarak bazı hastalık ve kalite ile ilgili allellerin tespiti yapılmıştır. Moleküler tarama sonucunda kullanılan 8 DNA markörü 25 adet allel üretirken, çalışmada kullanılan DNA markörlerinin ortalama polimorfizm bilgi içeriği (PIC) değeri 0.9775 olarak tespit edilmiştir. En yüksek polimorfizm bilgi içeriği değeri 0.99 olarak hesaplanırken, en düşük polimorfizm bilgi içeriği değeri 0.95 olarak hesaplanmıştır. Çalışmada DNA markörleri tarafından üretilen 25 allel kullanılarak oluşturulan dendrogramda, ebeveynlere göre iki ana grup meydana gelmiştir. Zenit×B27-7, Zenit×B27-9 ve Zenit×B27-11 ile Zenit×B27-5, Zenit×B27-6, Zenit×B27-8, Zenit×B27-10 melez kombinasyonları % 100 benzer bulunmuştur. Araştırma sonuçlarına göre Zenit×B27-1, Zenit×B27-2 ve Zenit×B27-3 genotiplerinde Waxy (Wx-A1) özelliğine ait genler belirlenirken, Zenit×B27-3 ve Zenit×B27-5 genotiplerinde yüksek proteine (Gpc-B1) ait gen bölgesinin yer aldığı saptanmıştır.

Kaynakça

  • Afzal, M., Alghamdi, S. S., Migdadi, H. M., Khan, M. A., & Farooq, M. (2018). Morphological and Molecular genetic diversity analysis of chickpea genotypes. Int. J. Agric. Biol, 20, 1062-1070.
  • Alghamdi, S. S., Alfifi, S. A., Migdadi, H. M., Al-Rowaily, S. L., El-Harty, E. H., & Farooq, M. (2017). Morphological and genetic diversity of cereal genotypes in kingdom of Saudi Arabia. International Journal of Agriculture and Biology, 19(4), 601-609.
  • Aydemir, G., Dumlupınar, Z., Yüce, İ., Narlı, T., Sunulu, S., & Güngör, H. (2020). Evaluation of F5 Individuals Obtained from B28× Kunduru-1149 Reciprocal Cross Population by Functional Markers. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(4), 1005-1011.
  • Bansal, U. K., Muhammad, S., Forrest, K. L., Hayden, M. J., & Bariana, H. S. (2015). Mapping of a new stem rust resistance gene Sr49 in chromosome 5B of wheat. Theoretical and applied genetics, 128, 2113-2119.
  • Bulunuz Palaz, E., Demirel, F., Adali, S., Demirel, S., & Yilmaz, A. (2023). Genetic relationships of salep orchid species and gene flow among Serapias vomeracea× Anacamptis morio hybrids. Plant Biotechnology Reports, 17(2), 315-327.
  • Butow, B. J., Ma, W., Gale, K. R., Cornish, G. B., Rampling, L., Larroque, O., ... & Békés, F. (2003). Molecular discrimination of Bx7 alleles demonstrates that a highly expressed high-molecular-weight glutenin allele has a major impact on wheat flour dough strength. Theoretical and Applied Genetics, 107, 1524-1532.
  • Büyükakkaşlar, M., Yüce, İ., Başkonuş, T., Dokuyucu, T., Akkaya, A., & Dumlupınar, Z. (2020). B27× Ege 88 resiprokal melez popülasyonunda F4 bireylerin allel spesifik markörlerle değerlendirilmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(6), 1647-1655.
  • Demirel, F. (2020). Genetic diversity of Emmer wheats using iPBS markers. Avrupa Bilim ve Teknoloji Dergisi, (20), 640-646.
  • Dice, L.R. (1945). Measures of the amount of ecologic association between species. Ecology, 26: 297-302. Distelfeld, A., Uauy, C., Fahima, T., & Dubcovsky, J. (2006). Physical map of the wheat high‐grain protein content gene Gpc‐B1 and development of a high‐throughput molecular marker. New Phytologist, 169(4), 753-763.
  • Gürcan, K., Demirel, F., Tekin, M., Demirel, S., & Akar, T. (2017). Molecular and agro-morphological characterization of ancient wheat landraces of Turkey. BMC plant biology, 17, 1-10.
  • Heun, M., Schafer-Pregl, R., Klawan, D., Castagna, R., Accerbi, M., Borghi, B., & Salamini, F. (1997). Site of einkorn wheat domestication identified by DNA fingerprinting. Science, 278(5341), 1312-1314.
  • Karakaya, O., Yaman, M., Balta, F., Yilmaz, M., & Balta, M. F. (2023). Assessment of genetic diversity revealed by morphological traits and ISSR markers in hazelnut germplasm (Corylus avellana L.) from Eastern Black Sea Region, Turkey. Genetic Resources and Crop Evolution, 70(2), 525-537.
  • Kim, H. S., & Ward, R. W. (2000). Patterns of RFLP-based genetic diversity in germplasm pools of common wheat with different geographical or breeding program origins. Euphytica, 115, 197-208.
  • Koçyiğit, B.K., Yüce, İ., Başkonuş, T., Dokuyucu, T., Akkaya, A., & Dumlupinar, Z. (2021). Evaluation of F4 individuals belong to Seri 82 × B35 bread wheat (Triticum aestivum L.) cross population using functional DNA markers. KSU Journal of Agriculture and Nature, 24(3), 586-593.
  • Maryami, Z., Fazeli, A., & Mehrabi, A. A. (2014). Investigation of diversity of Waxy-A1 gene using amplification in different spices in A genome wheat's. Advances in Environmental Biology, 8(7), 2004-2007.
  • Najaphy, A., Parchin, R. A., Farshadfar, E., & Farshadfar, E. (2012). Comparison of phenotypic and molecular characterizations of some important wheat cultivars and advanced breeding lines. Australian Journal of Crop Science, 6(2), 326-332.
  • Oliver, R. E., Obert, D. E., Hu, G., Bonman, J. M., O’Leary-Jepsen, E., & Jackson, E. W. (2010). Development of oat-based markers from barley and wheat microsatellites. Genome, 53(6), 458-471.
  • Robbana, C., Kehel, Z., Ben Naceur, M. B., Sansaloni, C., Bassi, F., & Amri, A. (2019). Genome-wide genetic diversity and population structure of Tunisian durum wheat landraces based on DArTseq technology. International Journal of Molecular Sciences, 20(6), 1352.
  • Röder, M. S., Plaschke, J., König, S. U., Börner, A., Sorrells, M. E., Tanksley, S. D., & Ganal, M. W. (1995). Abundance, variability and chromosomal location of microsatellites in wheat. Molecular and General Genetics MGG, 246, 327-333.
  • Rohlf, F. J. (2005). NTSYS-pc: numerical taxonomy and multivariate analysis system version 2.2. Setauket. Sajjad, M., Khan, S. H., & Shahzad, M. (2018). Patterns of allelic diversity in spring wheat populations by SSR-markers. Cytology and Genetics, 52, 155-160.
  • Salem, K. F., Röder, M. S., & Börner, A. (2015). Assessing genetic diversity of Egyptian hexaploid wheat (Triticum aestivum L.) using microsatellite markers. Genetic Resources and Crop Evolution, 62, 377-385.
  • Shariflou, M. R., & Sharp, P. J. (1999). A polymorphic microsatellite in the 3’end of ‘waxy’genes of wheat, Triticum aestivum. Plant Breeding, 118(3), 275-277.
  • Tsonev, S., Christov, N. K., Mihova, G., Dimitrova, A., & Todorovska, E. G. (2021). Genetic diversity and population structure of bread wheat varieties grown in Bulgaria based on microsatellite and phenotypic analyses. Biotechnology & Biotechnological Equipment, 35(1), 1520-1533.
  • Uzun, A., Pinar, H., Yaman, M., Yigit, M. A., Cakiroglu, Y., Karakaya, A., Uysal, M., Ozturk, G., Yilmaz, K. U., Gurcan, K., & Ercisli, S. (2022). Identification of genetic diversity in wild pear (Pyrus elaeagrifolia Pall.) Genotypes collected from different regions of turkey with SSR marker system. Genetika, 54(1), 109-118.
  • Weir, B. S. (1996). Genetik Veri Analizi II, 2. baskı. Sinauer Associates Inc, Sunderland, MA.
  • Yıldız, E., Pinar, H., Uzun, A., Yaman, M., Sumbul, A., & Ercisli, S. (2021). Identification of genetic diversity among Juglans regia L. genotypes using molecular, morphological, and fatty acid data. Genetic Resources and Crop Evolution, 68, 1425-1437.
  • Yüce, İ., & Dumlupınar, Z. (2023). Evaluation of agronomic traits and allele specific DNA markers related to some disease and quality traits in mutant Karakılçık M4 individuals. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26(4), 861-869.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Agronomi
Bölüm Araştırma Makaleleri
Yazarlar

İlker Yüce 0000-0002-9761-3561

Hatice Osanmaz 0000-0002-5516-741X

Ziya Dumlupınar 0000-0003-3119-6926

Erken Görünüm Tarihi 28 Aralık 2023
Yayımlanma Tarihi 30 Aralık 2023
Gönderilme Tarihi 17 Ekim 2023
Kabul Tarihi 30 Kasım 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Yüce, İ., Osanmaz, H., & Dumlupınar, Z. (2023). Zenit×B27 Makarnalık Buğday Popülasyonunun SSR Markörleriyle Moleküler Karakterizasyonu. Ziraat Mühendisliği(378), 78-86. https://doi.org/10.33724/zm.1375967