The purpose of this study was to examine the effect of missing data handling methods on the parameters of t-test and ANOVA. The study was conducted with simuated data sets. These data sets were produced in a way that they would have normal distributions in high and low correlation and their sizes were 50, 100, 200, 400 units. Under random conditions, data sets were reduced %5, %10, %20 in the form of MCAR. In the simulated data sets, mean substitution method, regression method, expectation-maximization (EM) method and deletion method were applied. Results showed that in different sample sizes and correlations, findings were differentiated. It is observed that in data sets with low sample sizes, regression and EM application were usefull on the other hand in data sets with larger sample sizes, mean substitution method instead of regression method had more consistent results
Bu araştırmanın amacı, kayıp veri sorunu giderme yöntemlerinin t-testi ve ANOVA parametreleri üzerine etkisinin incelenmesidir. Araştırma 50, 100, 200, 400 birimlik yapay veri setleri üzerinden yürütülmüştür. Veri setleri düşük ve yüksek korelasyonlu normal dağılıma uygun olarak oluşturulmuştur. %5, %10, %20 kayıp olacak şekilde rastgele koşullar altında eksiltilmiş veriler Tamamıyla Rassal Olarak Kayıp (TROK) yapısına uygun oluşturulmuştur. Türetilen veri setlerine kayıp veri giderme yöntemlerinden silme, yerine ortalama koyma, regresyon ve beklenti maksimizasyonu yöntemleri uygulanmıştır. Çalışma sonucunda kullanılan yöntemlerin ortaya koyduğu değerler farklı korelasyona ve farklı büyüklükteki veri setlerinde oldukça değişiklik göstermiştir. Düşük birimli veri setlerinde regresyon ve Beklenti Maksimizasyonu (BM) yöntemleri en yakın sonuçları verirken, yüksek birimli veri setlerinde regresyon ve yerine ortalama koyma yöntemi tam veri setlerine uygulanan analiz değerleriyle daha tutarlı sonuçlar vermiştir
Primary Language | English |
---|---|
Journal Section | Articles |
Authors | |
Publication Date | January 1, 2014 |
Submission Date | January 28, 2015 |
Published in Issue | Year 2014 Volume: 14 Issue: 1 |