Review
BibTex RIS Cite

Likenlerin doğal insektisit olarak kullanımı

Year 2018, Volume: 2 Issue: 1, 22 - 27, 01.05.2018
https://doi.org/10.30616/ajb.371020

Abstract

Tarım, geçmişten günümüze kadar insanoğlu için
en büyük istihdam kaynaklarından biri olmuştur.
Bu
alanda elde edilen ürünler ülke ekonomilerine önemli ölçüde katkı sağlamaktadır.

Bununla
birlikte, ürün veriminde düşüşlere sebep olan organizma sayısı bir hayli
fazladır.
Zararlı organizmalar ile mücadele konusunda
tercih edilen uygulamaların başında kimyasal insektisit kullanımı gelmektedir.

Fakat
bu insektisitlerin yan etkilerinin yüksek düzeyde olması araştırmacıları
alternatif çalışma konularına yönlendirmiştir.
Biyolojik mücadele
başlığı altında ele alınan, doğal ürünler aracılığı ile insektisit üretimi
popüler alanlar içerisinde yer almaktadır.
Likenler de
yapılarında bulunan kendilerine özgü bileşenleri sayesinde doğal insektisit
kaynaklarına malzeme olmaktadır.
Yıllardır birçok
alanda yararlanılan likenlerin gerek ekstraktları gerekse saf bileşenleri
aracılığı ile farklı böcek türleri üzerinde toksik etkileri test edilmektedir.
Bu noktada, likenlerden yüksek oranda verim elde edilmekle
beraber çalışmaların ağırlıklı olarak ekstraktlar üzerinde gerçekleştirildiği
dikkat çekmektedir.
Tüm bu çalışmalar ışığında, farklı
türler üzerinde insektisit aktivite gösteren likenlerdeki aktif bileşenlerin ve
böceklerdeki etki mekanizmalarının tespiti üzerine gerçekleştirilecek
çalışmaların artırılması ile biyolojik insektisit üretim basamağına katkı
sağlanacaktır.

References

  • Armstrong RA (2004). Lichens, Lichenometry and Global Warming. In: Microbiologist. pp 32–35.
  • Armstrong R, Bradwell T (2010). Growth of Crustose Lichens: A Review. Geogr Ann Ser A, Phys Geogr 92: 3–17.
  • Aslan A (1995). Erzurum-Kars-Artvin Arasında Yer Alan Bölge Likenleri Üzerine Taksonomik İncelemeler. Doctorate Thesis, Uludağ University Institute of Science and Technology, Bursa, Turkey.
  • Bačkor M, Fahselt D (2008). Lichen Photobionts and Metal Toxicity. Symbiosis 46: 1–10.
  • Balaji P, Malarvannan S, Hariharan GN (2007). Efficacy of Roccella montagnei Extracts on Helicoverpa armigera (Lepidoptera: Noctuidae). J Entomol 4: 248–252.
  • Brodo IM, Sharnoff SD, Sharnoff S (2001). About the Lichens. In: Lichens of North America. Yale University Press, New Haven & London, pp 3–113.
  • Buckingham SD, Ihara M, Sattelle DB, Matsuda K (2017). Mechanisms of Action, Resistance and Toxicity of Insecticides Targeting GABA Receptors. Curr Med Chem 24: 2935–2945.
  • Cetin H, Tufan-Cetin O, Turk AO, Tay T, Candan M, Yanikoglu A, Sumbul H (2008). Insecticidal Activity of Major Lichen Compounds, (-)- and (+)-Usnic Acid, against the Larvae of House Mosquito, Culex pipiens L. Parasitol Res 102: 1277–1279.
  • Culberson CF, Culberson WL (2001). Future Directions in Lichen Chemistry. Bryologist 104: 230–234.
  • Denecke S, Nowell CJ, Fournier-Level A, Perry T, Batterham P (2015). The Wiggle Index: An Open Source Bioassay to Assess Sub-Lethal Insecticide Response in Drosophila melanogaster. Plos One 10: e0145051.
  • Dogan M, Emsen B, Aasim M, Yildirim E (2017). Ceratophyllum demersum L. Extract as a Botanical Insecticide for Controlling the Maize Weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Egypt J Biol Pest Control 27: 11–15.
  • Emmerich R, Giez I, Lange OL, Proksch P (1993). Toxicity and Antifeedant Activity of Lichen Compounds against the Polyphagous Herbivorous Insect Spodoptera littoralis. Phytochemistry 33: 1389–1394.
  • Emsen B, Bulak Y, Yildirim E, Aslan A, Ercisli S (2012a). Activities of Two Major Lichen Compounds, Diffractaic Acid and Usnic Acid against Leptinotarsa decemlineata Say, 1824 (Coleoptera: Chrysomelidae). Egypt J Biol Pest Control 22: 5–10.
  • Emsen B, Yildirim E, Aslan A, Anar M, Ercisli S (2012b). Insecticidal Effect of the Extracts of Cladonia foliacea (Huds.) Willd. and Flavoparmelia caperata (L.) Hale Against Adults of the Grain Weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae). Egypt J Biol Pest Control 22: 145–149.
  • Emsen B, Aslan A, Yildirim E, Ercisli S (2013). Toxicity Effects of Some Lichen Species Extracts against the Colorado Potato Beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Egypt J Biol Pest Control 23: 193–199.
  • Emsen B, Yildirim E, Aslan A (2015). Insecticidal Activities of Extracts of Three Lichen Species on Sitophilus granarius (L.) (Coleoptera: Curculionidae). Plant Prot Sci 51: 156–161.
  • Emsen B, Dogan M, Aasim M, Yildirim E (2016). Insecticidal Activity of In Vitro Propagated Aquatic Plant Ceratophyllum demersum L. against Granary Weevil Sitophilus granarius L. (Coleoptera: Curculionidae). Egypt J Biol Pest Control 26: 619–624.
  • Grube M, Spribille T (2012). Exploring Symbiont Management in Lichens. Mol Ecol 21: 3098–3099.
  • Isman MB (1997). Neem and Other Botanical Insecticides: Barriers to Commercialization. Phytoparasitica 25: 339–344.
  • Kordali S, Yildirim E, Yazici G, Emsen B, Kabaagac G, Ercisli S (2012). Fumigant Toxicity of Essential Oils of Nine Plant Species from Asteraceae and Clusiaceae against Sitophilus granarius (L.) (Coleoptera: Curculionidae). Egypt J Biol Pest Control 22: 11–14.
  • Kordali S, Emsen B, Yildirim E (2013). Fumigant Toxicity of Essential Oils from Fifteen Plant Species against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Egypt J Biol Pest Control 23: 241–246.
  • Kranner I, Beckett R, Hochman A, Nash TH (2008). Desiccation-Tolerance in Lichens: A Review. Bryologist 111: 576–593.
  • Millot M, Dieu A, Tomasi S (2016). Dibenzofurans and Derivatives from Lichens and Ascomycetes. Nat Prod Rep 33: 801–811.
  • Murugesan S, Senthilkumar N, Babu DS, Rajasugunasekar D (2016). Chemical Composition, Antifeedant and Insecticidal Activities of Tree Borne Oil Seeds. Pestology 40: 29–41.
  • Nash TH (2008). Lichen Biology. Cambridge University Press, New York, p 486.
  • Nguyen K-H, Chollet-Krugler M, Gouault N, Tomasi S (2013). UV-Protectant Metabolites from Lichens and Their Symbiotic Partners. Nat Prod Rep 30: 1490–1508.
  • Nimis PL, Skert N (2006). Lichen Chemistry and Selective Grazing by the Coleopteran Lasioderma serricorne. Environ Exp Bot 55: 175–182.
  • Oberemok VV, Laikova KV, Gninenko YI, Zaitsev AS, Nyadar PM, Adeyemi TA (2015). A Short History of Insecticides. J Plant Prot Res 55: 221–226.
  • Pant M, Dubey S, Patanjali PK (2016). Recent Advancements in Bio-Botanical Pesticide Formulation Technology Development. In: Herbal Insecticides, Repellents and Biomedicines: Effectiveness and Commercialization. pp 117–126.
  • Rattan RS (2010). Mechanism of Action of Insecticidal Secondary Metabolites of Plant Origin. Crop Prot 29: 913–920.
  • Rikkinen J (2015). Cyanolichens. Biodivers Conserv 24: 973–993.
  • Shrestha G, St. Clair LL (2013). Lichens: A Promising Source of Antibiotic and Anticancer Drugs. Phytochem Rev 12: 229–244.
  • Shrestha G, St. Clair LL, O’Neill KL (2015). The Immunostimulating Role of Lichen Polysaccharides: A Review. Phyther Res 29: 317–322.
  • Shukla V, Joshi GP, Rawat MSM (2010). Lichens as a Potential Natural Source of Bioactive Compounds: A Review. Phytochem Rev 9: 303–314.
  • Sierro N, Battey JN, Ouadi S, Bovet L, Goepfert S, Bakaher N, Peitsch MC, Ivanov NV (2013). Reference Genomes and Transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol 14: R60.
  • Silva MDC, Sá RA, Napoleão TH, Gomes FS, Santos NDL, Albuquerque AC, Xavier HS, Paiva PMG, Correia MTS, Coelho LCBB (2009). Purified Cladonia verticillaris Lichen Lectin: Insecticidal Activity on Nasutitermes corniger (Isoptera: Termitidae). Int Biodeterior Biodegrad 63: 334–340.
  • Sipman HJM (2002). The Significance of the Northern Andes for Lichens. Bot Rev 68: 88–99.
  • Suzuki MT, Parrot D, Berg G, Grube M, Tomasi S (2016). Lichens as Natural Sources of Biotechnologically Relevant Bacteria. Appl Microbiol Biotechnol 100: 583–595.
  • Szczepaniak K, Biziuk M (2003). Aspects of the Biomonitoring Studies Using Mosses and Lichens as Indicators of Metal Pollution. Environ Res 93: 221–230.
  • Tewary DK, Bhardwaj A, Shanker A (2005). Pesticidal Activities in Five Medicinal Plants Collected from Mid Hills of Western Himalayas. Ind Crops Prod 22: 241–247.
  • Tufan Çetin Ö, Sümbül H (2008). Liken Ekstraktları ve Sekonder Bileşiklerinin Böcek Kontrolünde Kullanımları. Türk Liken Topluluğu Bülteni 5: 8–10.
  • Tutel B (1986). Liken Biyolojisi ve Faydaları. Marmara Üniversitesi Eczac Fakültesi Derg 2: 185–194.
  • Uysal H, Altun D, Aslan A (2009). Drosophila melanogaster’de Lobaria pulmonaria (L.) Hoffm. Likeninin Ömür Uzunluğu Üzerine Etkisi. TÜBAV Bilim Derg 2: 271–276.
  • Walia S, Saha S, Tripathi V, Sharma KK (2017). Phytochemical Biopesticides: Some Recent Developments. Phytochem Rev 16: 989–1007.
  • Xu ZQ, Li WH, Bao WK, Xu Q (2005). A Review on Primary Succession of Vegetation. Acta Ecol Sin 25: 3383–3389.
  • Yildirim E, Kesdek M, Kordali S (2005). Effects of Essential Oils of Three Plant Species on Tribolium confusum Du Val and Sitophilus granarius (L.) (Coleoptera: Tenebrionidae and Curculionidae). Fresenius Environ Bull 14: 574–578.
  • Yıldırım E, Çalmaşur Ö, Kesdek M (2009). Imidacloprid, Thiamethoxam and Cyromazine Seed Treatments for the Control of Cabbage Insect Pests in Erzurum, in Turkey. Atatürk Univ J Agric Fac 40: 23–34.
  • Yildirim E, Aslan A, Emsen B, Cakir A, Ercisli S (2012a). Insecticidal Effect of Usnea longissima (Parmeliaceae) Extract against Sitophilus granarius (Coleoptera: Curculionidae). Int J Agric Biol 14: 303–306.
  • Yildirim E, Emsen B, Aslan A, Bulak Y, Ercisli S (2012b). Insecticidal Activity of Lichens against the Maize Weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Egypt J Biol Pest Control 22: 151–156.
  • Yildirim E, Emsen B, Kordali S (2013). Insecticidal Effects of Monoterpenes on Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). J Appl Bot Food Qual 86: 198–204.
  • Zambare VP, Christopher LP (2012). Biopharmaceutical Potential of Lichens. Pharm Biol 50: 778–798.

Use of lichens as natural insecticide

Year 2018, Volume: 2 Issue: 1, 22 - 27, 01.05.2018
https://doi.org/10.30616/ajb.371020

Abstract

Agriculture has become one of
the greatest sources of employment for mankind from the past to the present. The
products obtained in this area provide a significant contribution to the
national economies.
However, the number of
organisms causing the decline in crop yield is quite high.
The preferred applications for
combating harmful organisms are the use of chemical insecticides.
However, the high level of side
effects of these insecticides led researchers to alternative study areas.
Insecticide production through
natural products that is under the title of biological struggle, is within
popular areas. Lichens are also materials for natural insecticide sources due
to their unique constituents in the constructions. For many years, the toxic
effects of lichens utilized in
many fields on
different insect species have been tested through their extracts and pure
components. At this point, it is noteworthy that while high yield is obtained
from lichens, the studies are predominantly carried out on the extracts.

In the
light of all these studies, it will be contributed to biological insecticide
production stage by increasing of the studies performed on determination of the
active components in lichens showing insecticidal activity on different species
and on mechanisms of action in insects
.

References

  • Armstrong RA (2004). Lichens, Lichenometry and Global Warming. In: Microbiologist. pp 32–35.
  • Armstrong R, Bradwell T (2010). Growth of Crustose Lichens: A Review. Geogr Ann Ser A, Phys Geogr 92: 3–17.
  • Aslan A (1995). Erzurum-Kars-Artvin Arasında Yer Alan Bölge Likenleri Üzerine Taksonomik İncelemeler. Doctorate Thesis, Uludağ University Institute of Science and Technology, Bursa, Turkey.
  • Bačkor M, Fahselt D (2008). Lichen Photobionts and Metal Toxicity. Symbiosis 46: 1–10.
  • Balaji P, Malarvannan S, Hariharan GN (2007). Efficacy of Roccella montagnei Extracts on Helicoverpa armigera (Lepidoptera: Noctuidae). J Entomol 4: 248–252.
  • Brodo IM, Sharnoff SD, Sharnoff S (2001). About the Lichens. In: Lichens of North America. Yale University Press, New Haven & London, pp 3–113.
  • Buckingham SD, Ihara M, Sattelle DB, Matsuda K (2017). Mechanisms of Action, Resistance and Toxicity of Insecticides Targeting GABA Receptors. Curr Med Chem 24: 2935–2945.
  • Cetin H, Tufan-Cetin O, Turk AO, Tay T, Candan M, Yanikoglu A, Sumbul H (2008). Insecticidal Activity of Major Lichen Compounds, (-)- and (+)-Usnic Acid, against the Larvae of House Mosquito, Culex pipiens L. Parasitol Res 102: 1277–1279.
  • Culberson CF, Culberson WL (2001). Future Directions in Lichen Chemistry. Bryologist 104: 230–234.
  • Denecke S, Nowell CJ, Fournier-Level A, Perry T, Batterham P (2015). The Wiggle Index: An Open Source Bioassay to Assess Sub-Lethal Insecticide Response in Drosophila melanogaster. Plos One 10: e0145051.
  • Dogan M, Emsen B, Aasim M, Yildirim E (2017). Ceratophyllum demersum L. Extract as a Botanical Insecticide for Controlling the Maize Weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Egypt J Biol Pest Control 27: 11–15.
  • Emmerich R, Giez I, Lange OL, Proksch P (1993). Toxicity and Antifeedant Activity of Lichen Compounds against the Polyphagous Herbivorous Insect Spodoptera littoralis. Phytochemistry 33: 1389–1394.
  • Emsen B, Bulak Y, Yildirim E, Aslan A, Ercisli S (2012a). Activities of Two Major Lichen Compounds, Diffractaic Acid and Usnic Acid against Leptinotarsa decemlineata Say, 1824 (Coleoptera: Chrysomelidae). Egypt J Biol Pest Control 22: 5–10.
  • Emsen B, Yildirim E, Aslan A, Anar M, Ercisli S (2012b). Insecticidal Effect of the Extracts of Cladonia foliacea (Huds.) Willd. and Flavoparmelia caperata (L.) Hale Against Adults of the Grain Weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae). Egypt J Biol Pest Control 22: 145–149.
  • Emsen B, Aslan A, Yildirim E, Ercisli S (2013). Toxicity Effects of Some Lichen Species Extracts against the Colorado Potato Beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Egypt J Biol Pest Control 23: 193–199.
  • Emsen B, Yildirim E, Aslan A (2015). Insecticidal Activities of Extracts of Three Lichen Species on Sitophilus granarius (L.) (Coleoptera: Curculionidae). Plant Prot Sci 51: 156–161.
  • Emsen B, Dogan M, Aasim M, Yildirim E (2016). Insecticidal Activity of In Vitro Propagated Aquatic Plant Ceratophyllum demersum L. against Granary Weevil Sitophilus granarius L. (Coleoptera: Curculionidae). Egypt J Biol Pest Control 26: 619–624.
  • Grube M, Spribille T (2012). Exploring Symbiont Management in Lichens. Mol Ecol 21: 3098–3099.
  • Isman MB (1997). Neem and Other Botanical Insecticides: Barriers to Commercialization. Phytoparasitica 25: 339–344.
  • Kordali S, Yildirim E, Yazici G, Emsen B, Kabaagac G, Ercisli S (2012). Fumigant Toxicity of Essential Oils of Nine Plant Species from Asteraceae and Clusiaceae against Sitophilus granarius (L.) (Coleoptera: Curculionidae). Egypt J Biol Pest Control 22: 11–14.
  • Kordali S, Emsen B, Yildirim E (2013). Fumigant Toxicity of Essential Oils from Fifteen Plant Species against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Egypt J Biol Pest Control 23: 241–246.
  • Kranner I, Beckett R, Hochman A, Nash TH (2008). Desiccation-Tolerance in Lichens: A Review. Bryologist 111: 576–593.
  • Millot M, Dieu A, Tomasi S (2016). Dibenzofurans and Derivatives from Lichens and Ascomycetes. Nat Prod Rep 33: 801–811.
  • Murugesan S, Senthilkumar N, Babu DS, Rajasugunasekar D (2016). Chemical Composition, Antifeedant and Insecticidal Activities of Tree Borne Oil Seeds. Pestology 40: 29–41.
  • Nash TH (2008). Lichen Biology. Cambridge University Press, New York, p 486.
  • Nguyen K-H, Chollet-Krugler M, Gouault N, Tomasi S (2013). UV-Protectant Metabolites from Lichens and Their Symbiotic Partners. Nat Prod Rep 30: 1490–1508.
  • Nimis PL, Skert N (2006). Lichen Chemistry and Selective Grazing by the Coleopteran Lasioderma serricorne. Environ Exp Bot 55: 175–182.
  • Oberemok VV, Laikova KV, Gninenko YI, Zaitsev AS, Nyadar PM, Adeyemi TA (2015). A Short History of Insecticides. J Plant Prot Res 55: 221–226.
  • Pant M, Dubey S, Patanjali PK (2016). Recent Advancements in Bio-Botanical Pesticide Formulation Technology Development. In: Herbal Insecticides, Repellents and Biomedicines: Effectiveness and Commercialization. pp 117–126.
  • Rattan RS (2010). Mechanism of Action of Insecticidal Secondary Metabolites of Plant Origin. Crop Prot 29: 913–920.
  • Rikkinen J (2015). Cyanolichens. Biodivers Conserv 24: 973–993.
  • Shrestha G, St. Clair LL (2013). Lichens: A Promising Source of Antibiotic and Anticancer Drugs. Phytochem Rev 12: 229–244.
  • Shrestha G, St. Clair LL, O’Neill KL (2015). The Immunostimulating Role of Lichen Polysaccharides: A Review. Phyther Res 29: 317–322.
  • Shukla V, Joshi GP, Rawat MSM (2010). Lichens as a Potential Natural Source of Bioactive Compounds: A Review. Phytochem Rev 9: 303–314.
  • Sierro N, Battey JN, Ouadi S, Bovet L, Goepfert S, Bakaher N, Peitsch MC, Ivanov NV (2013). Reference Genomes and Transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol 14: R60.
  • Silva MDC, Sá RA, Napoleão TH, Gomes FS, Santos NDL, Albuquerque AC, Xavier HS, Paiva PMG, Correia MTS, Coelho LCBB (2009). Purified Cladonia verticillaris Lichen Lectin: Insecticidal Activity on Nasutitermes corniger (Isoptera: Termitidae). Int Biodeterior Biodegrad 63: 334–340.
  • Sipman HJM (2002). The Significance of the Northern Andes for Lichens. Bot Rev 68: 88–99.
  • Suzuki MT, Parrot D, Berg G, Grube M, Tomasi S (2016). Lichens as Natural Sources of Biotechnologically Relevant Bacteria. Appl Microbiol Biotechnol 100: 583–595.
  • Szczepaniak K, Biziuk M (2003). Aspects of the Biomonitoring Studies Using Mosses and Lichens as Indicators of Metal Pollution. Environ Res 93: 221–230.
  • Tewary DK, Bhardwaj A, Shanker A (2005). Pesticidal Activities in Five Medicinal Plants Collected from Mid Hills of Western Himalayas. Ind Crops Prod 22: 241–247.
  • Tufan Çetin Ö, Sümbül H (2008). Liken Ekstraktları ve Sekonder Bileşiklerinin Böcek Kontrolünde Kullanımları. Türk Liken Topluluğu Bülteni 5: 8–10.
  • Tutel B (1986). Liken Biyolojisi ve Faydaları. Marmara Üniversitesi Eczac Fakültesi Derg 2: 185–194.
  • Uysal H, Altun D, Aslan A (2009). Drosophila melanogaster’de Lobaria pulmonaria (L.) Hoffm. Likeninin Ömür Uzunluğu Üzerine Etkisi. TÜBAV Bilim Derg 2: 271–276.
  • Walia S, Saha S, Tripathi V, Sharma KK (2017). Phytochemical Biopesticides: Some Recent Developments. Phytochem Rev 16: 989–1007.
  • Xu ZQ, Li WH, Bao WK, Xu Q (2005). A Review on Primary Succession of Vegetation. Acta Ecol Sin 25: 3383–3389.
  • Yildirim E, Kesdek M, Kordali S (2005). Effects of Essential Oils of Three Plant Species on Tribolium confusum Du Val and Sitophilus granarius (L.) (Coleoptera: Tenebrionidae and Curculionidae). Fresenius Environ Bull 14: 574–578.
  • Yıldırım E, Çalmaşur Ö, Kesdek M (2009). Imidacloprid, Thiamethoxam and Cyromazine Seed Treatments for the Control of Cabbage Insect Pests in Erzurum, in Turkey. Atatürk Univ J Agric Fac 40: 23–34.
  • Yildirim E, Aslan A, Emsen B, Cakir A, Ercisli S (2012a). Insecticidal Effect of Usnea longissima (Parmeliaceae) Extract against Sitophilus granarius (Coleoptera: Curculionidae). Int J Agric Biol 14: 303–306.
  • Yildirim E, Emsen B, Aslan A, Bulak Y, Ercisli S (2012b). Insecticidal Activity of Lichens against the Maize Weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Egypt J Biol Pest Control 22: 151–156.
  • Yildirim E, Emsen B, Kordali S (2013). Insecticidal Effects of Monoterpenes on Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). J Appl Bot Food Qual 86: 198–204.
  • Zambare VP, Christopher LP (2012). Biopharmaceutical Potential of Lichens. Pharm Biol 50: 778–798.
There are 51 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Reviews
Authors

Buğrahan Emsen 0000-0002-9636-2596

Ali Aslan

Publication Date May 1, 2018
Acceptance Date January 20, 2018
Published in Issue Year 2018 Volume: 2 Issue: 1

Cite

APA Emsen, B., & Aslan, A. (2018). Use of lichens as natural insecticide. Anatolian Journal of Botany, 2(1), 22-27. https://doi.org/10.30616/ajb.371020
AMA Emsen B, Aslan A. Use of lichens as natural insecticide. Ant J Bot. May 2018;2(1):22-27. doi:10.30616/ajb.371020
Chicago Emsen, Buğrahan, and Ali Aslan. “Use of Lichens As Natural Insecticide”. Anatolian Journal of Botany 2, no. 1 (May 2018): 22-27. https://doi.org/10.30616/ajb.371020.
EndNote Emsen B, Aslan A (May 1, 2018) Use of lichens as natural insecticide. Anatolian Journal of Botany 2 1 22–27.
IEEE B. Emsen and A. Aslan, “Use of lichens as natural insecticide”, Ant J Bot, vol. 2, no. 1, pp. 22–27, 2018, doi: 10.30616/ajb.371020.
ISNAD Emsen, Buğrahan - Aslan, Ali. “Use of Lichens As Natural Insecticide”. Anatolian Journal of Botany 2/1 (May 2018), 22-27. https://doi.org/10.30616/ajb.371020.
JAMA Emsen B, Aslan A. Use of lichens as natural insecticide. Ant J Bot. 2018;2:22–27.
MLA Emsen, Buğrahan and Ali Aslan. “Use of Lichens As Natural Insecticide”. Anatolian Journal of Botany, vol. 2, no. 1, 2018, pp. 22-27, doi:10.30616/ajb.371020.
Vancouver Emsen B, Aslan A. Use of lichens as natural insecticide. Ant J Bot. 2018;2(1):22-7.

Anatolian Journal of Botany is licensed under CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1.