Research Article
BibTex RIS Cite

Manyetik alanın nohut (Cicer arietinum L.) ve ayçiçeği (Helianthus annuus L.) çimlenmesi ve fide büyümesine etkileri

Year 2024, Volume: 8 Issue: 2, 150 - 156, 15.11.2024
https://doi.org/10.30616/ajb.1493290

Abstract

Organizmalar çevreleriyle etkileşim halindedir ve çevresel faktörlerin etkileri ekoloji ve tolerans düzeylerine bağlı olarak değişmektedir. Ancak manyetik alan tüm organizmalar için kaçınılmaz bir faktördür. Çalışmanın amacı, farklı manyetik alan (MF) uygulamalarının iki önemli tarım bitkisi (Ayçiçeği ve Nohut) türünün çimlenme yüzdesi, pigment içeriği ve antioksidan kapasitesi üzerine etkilerinin araştırılmasıdır. Çimlenme etkilerinin tespiti için ilk olarak tohumlar Helmholtz bobini tarafından oluşturulan 5 mT, 10 mT ve 20 mT manyetik alana maruz bırakılmıştır. Daha sonra fide testi için de aynı şartlarda hazırlanmıştır. MF her gün aynı saat diliminde 20 dakika uygulanmıştır. Çimlenme sonuçlarına göre ayçiçeği ve nohut tohumlarına MF uygulamasının kontrole göre çimlenme yüzdesinde artışa neden olduğu görülmüştür. 20 mT uygulaması ayçiçeği fidelerinde sürgün boyunda azalmaya neden olmuştur. Buna karşılık 20 mT MF uygulaması nohut fidelerinde sürgün uzunluğunun artmasına neden olmuştur. Tüm manyetik alan kuvvetleri nohut fidelerinde karotenoid düzeylerini arttırmıştır. Ayrıca uygulama ayçiçeği ve nohut fidelerinin fenolik ve flavonoid içeriklerini de etkilemiştir. Sekonder metabolitlerdeki artışa bağlı olarak DPPH ve FRAP aktiviteleri farklılık göstermiştir. Sonuç olarak MF uygulamasının bitki metabolizması üzerine etkisi olduğu ve tarımsal uygulamalarda kullanılma potansiyeline sahip olduğu sonucuna varılmıştır.

Project Number

FYL-2021-9463

References

  • Abdul N, Tahir R, Karim HFH (2010). Impact of magnetic application on the parameters related to growth of chickpea (Cicer arietinum L.). Jordan Journal of Biological Sciences 3(4): 175-184.
  • Alikamanoğlu S, Sen A (2011). Stimulation of growth and some biochemical parameters by magnetic field in wheat (Tritium aestivum L.) tissue cultures. African Journal of Biotechnology 10(53): 957- 963.
  • Arnon DI (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24(1): 1-15.
  • Baghel L, Kataria S, Guruprasad K (2018). Effect of static magnetic field pretreatment on growth, photosynthetic performance and yield of soybean under water stress. Photosynthetica 56: 718-730.
  • Belyavskaya NA (2004). Biological effects due to weak magnetic field on plants. Advances in Space Research 34(7): 1566-1574.
  • Bhattacharya R, Barman P (2011). Application of magnetic field on the early growth of Cicer arietinum seeds. International journal of physics 4: 1-9.
  • Dalar A, Konczak I (2013). Phenolic contents, antioxidant capacities and inhibitory activities against key metabolic syndrome relevant enzymes of herbal teas from Eastern Anatolia. Industrial Crops and Products 44: 383-390.
  • De Souza A, Garcia D, Sueiro L, Gilart F, Porras E, Licea L (2006). Pre sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics 27: 247-257.
  • Ercan I, Tombuloglu H, Alqahtani N, Alotaibi B, Bamhrez M, Alshumrani R, Kayed TS (2022). Magnetic field effects on the magnetic properties, germination, chlorophyll fluorescence, and nutrient content of barley (Hordeum vulgare L.). Plant Physiology and Biochemistry 170: 36-48.
  • Florez M, Carbonell MV, Martínez E (2007). Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. Environmental Experimental Botany 59: 68-75.
  • Herranz R, Manzano AI, Van Loon J J, Christianen P C, Medina FJ (2013). Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper-and microgravity environments. Astrobiology 13(3): 217-224.
  • Hu C, Yu J, Jiang H, Teng Z (2010). Exponental stabilization and synchronization of neural networks with time-varying delays via periodically interminent control. Nonlinearity 23(10): 2369.
  • Islam M, Maffei ME, Vigani G (2020). The geomagnetic field is a contributing factor for an efficient iron uptake in Arabidopsis thaliana. Frontiers in plant science 11: 325.
  • Jin Y, Zhi H, Lu Y, Wu B, Xiao T, Tong M (2019). Numerical simulation of three dimensional tank impacting on wavy water. In: AIAA Aviation 2019 Forum: 3642.
  • Konczak-Islam I, Yoshimoto M, Hou DX, Terahara N, Yamakawa O (2003). Potential chemopreventive properties of anthocyanin-rich aqueous extracts from ın vitro produced tissue of sweetpotato (Ipomoea batatas L.). Journal of Agricultural and Food Chemistry 51(20): 5916-5922.
  • Kornarzyński K, Sujak A, Czernell G, Wiącek D (2020). Effect of Fe3O4 nanoparticles on germination of seeds and concentration of elements in Helianthus annuus L. under constant magnetic field. Scientific Reports 10(1): 1-10.
  • Maffei ME (2014). Magnetic field effects on plant growth, development, and evolution. Frontiers in Plant Science 5: 445.
  • Moraes-De-Souza RA, Oldoni TLC, Regitano-D'arce MAB, Alencar SM (2008). Antioxidant activity and phenolic composition of herbal infusions consumed in Brasil. CYTA-Journal of Food 6(1): 41-47.
  • Mridha N, Nagarajan S (2014). Effect of pre-sowing static magnetic seed treatment on germination and root characters in chickpea (Cicer arietinum L.). Journal of Agricultural Physics 14(1): 22-29.
  • Nasiri M, Hassanpour H, Sorahinobar M, Niknam V (2022). Impact of static magnetic field on the callogenesis, phytochemical production and antioxidant enzymes in Anthemis gilanica. Russian Journal of Plant Physiology 69(4): 1-8.
  • Pentoś K, Wondołowska-Grabowska A, Gajda G, Babij M, Chohura P, Zaleski A, Gajda D (2022).The effect on the germination vigour of cucumber seeds after receiving magnetic field treatment pre-sowing. Applied Sciences 12(11): 5490.
  • Peyvandi M, Khaledi NK, Arbabian S (2013). The effects of magnetic fields on growth and enzyme activities of Helianthus annuus L. seedlings. Iranian Journal of Plant Physiology 3(3): 717-724.
  • Podleśny J, Podleśna A, Gładyszewska B, Bojarszczuk J (2021). Effect of pre-sowing magnetic field treatment on enzymes and phytohormones in pea (Pisum sativum L.) seeds and seedlings. Agronomy 11(3): 494.
  • Rainha N, Lima E, Baptista J, Rodrigues C (2011). Antioxidant properties, total phenolic, total carotenoids and chlorophyll content of anatomical parts of Hypericum foliosum. Journal of Medicinal Pants Research 5(10): 1930-1940.
  • Ramakrishna V, Rao PR (2005). Purification of acidic protease from the cotyledons of germinating Indian bean (Dolichos lablab L. var lignosus) seeds. African Journal of Biotechnology 4(7): 703-707.
  • Rochalska M, Orzeszko-Rywka A (2005). Magnetic field treatment improves seed performance. Seed Science Technology 33: 669-674.
  • Sahebjamei H, Abdolmaleki P, Ghanati F (2007). Effects of magnetic field on the antioxidant enzyme activities of suspension-cultured tobacco cells. Bioelectromagnetics 28: 42-47.
  • Sarraf M, Kataria S, Taimourya H, Santos LO, Menegatti RD, Jain M, Liu S (2020). Magnetic field (MF) applications in plants: An overview. Plants 9(9): 1139.
  • Shabrangy A, Ghatak A, Zhang S, Priller A, Chaturvedi, P, Weckwerth W (2021). Magnetic field induced changes in the shoot and root proteome of barley (Hordeum vulgare L.). Frontiers in Plant Science 12: 622-795.
  • Sharma R, Pandey ST, Verma O (2021). Response to pre-sowing seed treatment on germination indices, seedling growth and enzymatic activities of chickpea (Cicer arietinum L.) seed. International Journal of Ecology and Environmental Sciences 3(1): 405-410.
  • Shine MB, Guruprasad KN, Anand A (2012). Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean. Bioelectromagnetics 33(5): 428-437.
  • Strasak L, Vetterl V, Smarda J (2002). Effects of low-frequency magnetic fields on bacteria Escherichia coli. Bioelectrochemistry 55:161–164
  • Suarez Rivero D, Marin Mahecha O, Salazar Torres V, Real X, Ortiz Aguilar, J, Suarez Rivero M (2017). Biomass production and morpho-phsysiological effects on sunflower plants (Helianthus annuss L.) under induced magnetic fiels. Chemical Engineering Transactions 57: 115-120.
  • Sudha G, Vadivukkarasi S, Indhu Shree RB, Lakshmanan P (2012). Antioxidant activity of various extracts from an edible mushroom Pleurotus eous. Food Science and Biotechnology 21: 661-668.
  • Tarduno JA, Cottrell RD, Davis DJ, Nimmo F, Bono RK (2015). A hadean to palaeoarchean geodynamo recorded by single zircon crystals. Science 349: 521-524.
  • Tirono M, Hananto FS, Suhariningsih S, Aini VQ (2021). An effective dose of magnetic field to increase sesame plant growth and its resistance to Fusarium oxysporum wilt. International Journal of Design and Nature and Ecodynamics 16(3): 285-291.
  • Vashisth A, Nagarajan S (2008). Exposure of seeds to static magnetic field enhances germination and early growth characteristics in chickpea (Cicer arietinum L.). Bioelectromagnetics 29: 571-578.
  • Vashisth A, Nagarajan S (2010) Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology 167: 149-156.
  • Yano A, Ohashi Y, Hirasaki T, Fujiwara K (2004) Effects of a 60 Hz magnetic field on photosynthetic CO2 uptake and early growth of radish seedlings. Bioelectromagnetics 25: 572-581.

The effects of the magnetic field on germination and seedling growth of chickpea (Cicer arietinum L.) and sunflower (Helianthus annuus L.)

Year 2024, Volume: 8 Issue: 2, 150 - 156, 15.11.2024
https://doi.org/10.30616/ajb.1493290

Abstract

Organisms interact with their environment and effects of environmental factors vary depending on ecology and tolerance levels. However magnetic field is an inevitable factor for all organisms. The aim of the study was to investigate the effects of different magnetic field (MF) applications on germination percentage, pigment content and antioxidant capacity of two important agricultural plant (Sunflower and Chickpea) species. Initially, seeds were exposed to 5 mT, 10 mT and 20 mT magnetic field generated by Helmholtz coil for detection of germination effects. Then seedling test was survived at the same conditions. MF was applied 20 minutes for every day at the same time period. According to germination results, MF application to sunflower and chickpea seeds was resulted with increase in germination percentage compared to control. 20 mT application caused decrease in shoot length of sunflower seedlings. On the contrary, 20 mT MF application resulted with increase in shoot length of chickpea seedlings. All magnetic field strengths increased carotenoid levels in chickpea seedlings. Also, MF application affected the phenolic and flavonoid contents of sunflower and chickpea seedlings. Depending on the increase in secondary metabolites, DPPH and FRAP activities varied. As a conclusion, MF application contributed to effect on plant metabolism and it has the potential to be used in agricultural applications.

Supporting Institution

Van Yüzüncü Yıl University

Project Number

FYL-2021-9463

Thanks

This research was funded by Scientific Research Projects Coordination Unit of Van Yuzuncu Yil University with grant number FYL-2021-9463.

References

  • Abdul N, Tahir R, Karim HFH (2010). Impact of magnetic application on the parameters related to growth of chickpea (Cicer arietinum L.). Jordan Journal of Biological Sciences 3(4): 175-184.
  • Alikamanoğlu S, Sen A (2011). Stimulation of growth and some biochemical parameters by magnetic field in wheat (Tritium aestivum L.) tissue cultures. African Journal of Biotechnology 10(53): 957- 963.
  • Arnon DI (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24(1): 1-15.
  • Baghel L, Kataria S, Guruprasad K (2018). Effect of static magnetic field pretreatment on growth, photosynthetic performance and yield of soybean under water stress. Photosynthetica 56: 718-730.
  • Belyavskaya NA (2004). Biological effects due to weak magnetic field on plants. Advances in Space Research 34(7): 1566-1574.
  • Bhattacharya R, Barman P (2011). Application of magnetic field on the early growth of Cicer arietinum seeds. International journal of physics 4: 1-9.
  • Dalar A, Konczak I (2013). Phenolic contents, antioxidant capacities and inhibitory activities against key metabolic syndrome relevant enzymes of herbal teas from Eastern Anatolia. Industrial Crops and Products 44: 383-390.
  • De Souza A, Garcia D, Sueiro L, Gilart F, Porras E, Licea L (2006). Pre sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics 27: 247-257.
  • Ercan I, Tombuloglu H, Alqahtani N, Alotaibi B, Bamhrez M, Alshumrani R, Kayed TS (2022). Magnetic field effects on the magnetic properties, germination, chlorophyll fluorescence, and nutrient content of barley (Hordeum vulgare L.). Plant Physiology and Biochemistry 170: 36-48.
  • Florez M, Carbonell MV, Martínez E (2007). Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. Environmental Experimental Botany 59: 68-75.
  • Herranz R, Manzano AI, Van Loon J J, Christianen P C, Medina FJ (2013). Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper-and microgravity environments. Astrobiology 13(3): 217-224.
  • Hu C, Yu J, Jiang H, Teng Z (2010). Exponental stabilization and synchronization of neural networks with time-varying delays via periodically interminent control. Nonlinearity 23(10): 2369.
  • Islam M, Maffei ME, Vigani G (2020). The geomagnetic field is a contributing factor for an efficient iron uptake in Arabidopsis thaliana. Frontiers in plant science 11: 325.
  • Jin Y, Zhi H, Lu Y, Wu B, Xiao T, Tong M (2019). Numerical simulation of three dimensional tank impacting on wavy water. In: AIAA Aviation 2019 Forum: 3642.
  • Konczak-Islam I, Yoshimoto M, Hou DX, Terahara N, Yamakawa O (2003). Potential chemopreventive properties of anthocyanin-rich aqueous extracts from ın vitro produced tissue of sweetpotato (Ipomoea batatas L.). Journal of Agricultural and Food Chemistry 51(20): 5916-5922.
  • Kornarzyński K, Sujak A, Czernell G, Wiącek D (2020). Effect of Fe3O4 nanoparticles on germination of seeds and concentration of elements in Helianthus annuus L. under constant magnetic field. Scientific Reports 10(1): 1-10.
  • Maffei ME (2014). Magnetic field effects on plant growth, development, and evolution. Frontiers in Plant Science 5: 445.
  • Moraes-De-Souza RA, Oldoni TLC, Regitano-D'arce MAB, Alencar SM (2008). Antioxidant activity and phenolic composition of herbal infusions consumed in Brasil. CYTA-Journal of Food 6(1): 41-47.
  • Mridha N, Nagarajan S (2014). Effect of pre-sowing static magnetic seed treatment on germination and root characters in chickpea (Cicer arietinum L.). Journal of Agricultural Physics 14(1): 22-29.
  • Nasiri M, Hassanpour H, Sorahinobar M, Niknam V (2022). Impact of static magnetic field on the callogenesis, phytochemical production and antioxidant enzymes in Anthemis gilanica. Russian Journal of Plant Physiology 69(4): 1-8.
  • Pentoś K, Wondołowska-Grabowska A, Gajda G, Babij M, Chohura P, Zaleski A, Gajda D (2022).The effect on the germination vigour of cucumber seeds after receiving magnetic field treatment pre-sowing. Applied Sciences 12(11): 5490.
  • Peyvandi M, Khaledi NK, Arbabian S (2013). The effects of magnetic fields on growth and enzyme activities of Helianthus annuus L. seedlings. Iranian Journal of Plant Physiology 3(3): 717-724.
  • Podleśny J, Podleśna A, Gładyszewska B, Bojarszczuk J (2021). Effect of pre-sowing magnetic field treatment on enzymes and phytohormones in pea (Pisum sativum L.) seeds and seedlings. Agronomy 11(3): 494.
  • Rainha N, Lima E, Baptista J, Rodrigues C (2011). Antioxidant properties, total phenolic, total carotenoids and chlorophyll content of anatomical parts of Hypericum foliosum. Journal of Medicinal Pants Research 5(10): 1930-1940.
  • Ramakrishna V, Rao PR (2005). Purification of acidic protease from the cotyledons of germinating Indian bean (Dolichos lablab L. var lignosus) seeds. African Journal of Biotechnology 4(7): 703-707.
  • Rochalska M, Orzeszko-Rywka A (2005). Magnetic field treatment improves seed performance. Seed Science Technology 33: 669-674.
  • Sahebjamei H, Abdolmaleki P, Ghanati F (2007). Effects of magnetic field on the antioxidant enzyme activities of suspension-cultured tobacco cells. Bioelectromagnetics 28: 42-47.
  • Sarraf M, Kataria S, Taimourya H, Santos LO, Menegatti RD, Jain M, Liu S (2020). Magnetic field (MF) applications in plants: An overview. Plants 9(9): 1139.
  • Shabrangy A, Ghatak A, Zhang S, Priller A, Chaturvedi, P, Weckwerth W (2021). Magnetic field induced changes in the shoot and root proteome of barley (Hordeum vulgare L.). Frontiers in Plant Science 12: 622-795.
  • Sharma R, Pandey ST, Verma O (2021). Response to pre-sowing seed treatment on germination indices, seedling growth and enzymatic activities of chickpea (Cicer arietinum L.) seed. International Journal of Ecology and Environmental Sciences 3(1): 405-410.
  • Shine MB, Guruprasad KN, Anand A (2012). Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean. Bioelectromagnetics 33(5): 428-437.
  • Strasak L, Vetterl V, Smarda J (2002). Effects of low-frequency magnetic fields on bacteria Escherichia coli. Bioelectrochemistry 55:161–164
  • Suarez Rivero D, Marin Mahecha O, Salazar Torres V, Real X, Ortiz Aguilar, J, Suarez Rivero M (2017). Biomass production and morpho-phsysiological effects on sunflower plants (Helianthus annuss L.) under induced magnetic fiels. Chemical Engineering Transactions 57: 115-120.
  • Sudha G, Vadivukkarasi S, Indhu Shree RB, Lakshmanan P (2012). Antioxidant activity of various extracts from an edible mushroom Pleurotus eous. Food Science and Biotechnology 21: 661-668.
  • Tarduno JA, Cottrell RD, Davis DJ, Nimmo F, Bono RK (2015). A hadean to palaeoarchean geodynamo recorded by single zircon crystals. Science 349: 521-524.
  • Tirono M, Hananto FS, Suhariningsih S, Aini VQ (2021). An effective dose of magnetic field to increase sesame plant growth and its resistance to Fusarium oxysporum wilt. International Journal of Design and Nature and Ecodynamics 16(3): 285-291.
  • Vashisth A, Nagarajan S (2008). Exposure of seeds to static magnetic field enhances germination and early growth characteristics in chickpea (Cicer arietinum L.). Bioelectromagnetics 29: 571-578.
  • Vashisth A, Nagarajan S (2010) Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology 167: 149-156.
  • Yano A, Ohashi Y, Hirasaki T, Fujiwara K (2004) Effects of a 60 Hz magnetic field on photosynthetic CO2 uptake and early growth of radish seedlings. Bioelectromagnetics 25: 572-581.
There are 39 citations in total.

Details

Primary Language English
Subjects Plant Physiology
Journal Section Articles
Authors

Ömer Bingöl 0000-0001-8007-4621

Sibel Güdürü 0000-0001-7149-4480

Project Number FYL-2021-9463
Early Pub Date July 24, 2024
Publication Date November 15, 2024
Submission Date May 31, 2024
Acceptance Date July 21, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

APA Bingöl, Ö., & Güdürü, S. (2024). The effects of the magnetic field on germination and seedling growth of chickpea (Cicer arietinum L.) and sunflower (Helianthus annuus L.). Anatolian Journal of Botany, 8(2), 150-156. https://doi.org/10.30616/ajb.1493290
AMA Bingöl Ö, Güdürü S. The effects of the magnetic field on germination and seedling growth of chickpea (Cicer arietinum L.) and sunflower (Helianthus annuus L.). Ant J Bot. November 2024;8(2):150-156. doi:10.30616/ajb.1493290
Chicago Bingöl, Ömer, and Sibel Güdürü. “The Effects of the Magnetic Field on Germination and Seedling Growth of Chickpea (Cicer Arietinum L.) and Sunflower (Helianthus Annuus L.)”. Anatolian Journal of Botany 8, no. 2 (November 2024): 150-56. https://doi.org/10.30616/ajb.1493290.
EndNote Bingöl Ö, Güdürü S (November 1, 2024) The effects of the magnetic field on germination and seedling growth of chickpea (Cicer arietinum L.) and sunflower (Helianthus annuus L.). Anatolian Journal of Botany 8 2 150–156.
IEEE Ö. Bingöl and S. Güdürü, “The effects of the magnetic field on germination and seedling growth of chickpea (Cicer arietinum L.) and sunflower (Helianthus annuus L.)”, Ant J Bot, vol. 8, no. 2, pp. 150–156, 2024, doi: 10.30616/ajb.1493290.
ISNAD Bingöl, Ömer - Güdürü, Sibel. “The Effects of the Magnetic Field on Germination and Seedling Growth of Chickpea (Cicer Arietinum L.) and Sunflower (Helianthus Annuus L.)”. Anatolian Journal of Botany 8/2 (November 2024), 150-156. https://doi.org/10.30616/ajb.1493290.
JAMA Bingöl Ö, Güdürü S. The effects of the magnetic field on germination and seedling growth of chickpea (Cicer arietinum L.) and sunflower (Helianthus annuus L.). Ant J Bot. 2024;8:150–156.
MLA Bingöl, Ömer and Sibel Güdürü. “The Effects of the Magnetic Field on Germination and Seedling Growth of Chickpea (Cicer Arietinum L.) and Sunflower (Helianthus Annuus L.)”. Anatolian Journal of Botany, vol. 8, no. 2, 2024, pp. 150-6, doi:10.30616/ajb.1493290.
Vancouver Bingöl Ö, Güdürü S. The effects of the magnetic field on germination and seedling growth of chickpea (Cicer arietinum L.) and sunflower (Helianthus annuus L.). Ant J Bot. 2024;8(2):150-6.

Anatolian Journal of Botany is licensed under CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1.