Research Article
BibTex RIS Cite

Antimicrobial activities of chitosan-based edible films produced by adding different macrofungi extracts and plants essential oils

Year 2025, Volume: 9 Issue: 1, 1 - 5
https://doi.org/10.30616/ajb.1542112

Abstract

This research aims to reveal the antimicrobial activity of chitosan-based edible films containing different mushroom extracts and plant essential oils. In this study, edible films were produced using the essential oils of Satureja cuneifolia Ten., Mentha longifolia (L.) Hudson subsp. typhoides (Brig.) Harley var. typhoides (L.) Hudson and extracts of Amanita caesarea (Scop.) Pers. and Boletus reticulatus Schaeff. collected from different localities of Osmaniye province. The antimicrobial activities of these films were investigated on Escherichia coli by using the Kirby-Bauer disk diffusion test. At the end of the research, it was determined that the edible film obtained by adding S. cuneifolia Ten. essential oil (3%) had the highest antimicrobial activity. And also, it could be said that all the edible films produced had antimicrobial activity.

Ethical Statement

The authors have declared no conflict of interest

Supporting Institution

The Scientific Research Projects Unit at Osmaniye Korkut Ata University

Project Number

OKÜBAP-2021-PT3-004 and OKÜBAP-2021-PT3-006

Thanks

Thanks to the Scientific Research Projects Unit at Osmaniye Korkut Ata University (project numbers: OKÜBAP-2021-PT3-004 and OKÜBAP-2021-PT3-006) for the invaluable support.

References

  • Altiok D, Altiok E, Tihminlioglu F (2010). Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. Journal of Materials Science: Materials in Medicine 21: 2227-2236.
  • Amin T, Naik HR, Hussain SZ, Wani SM (2024). Polysaccharide Based Films for Food Packaging: Fundamentals, Properties and Applications. Singapore: Springer Verlag.
  • Barros L, Calhelha RC, Vaz JA, Ferreira IC, Baptista P, Estevinho LM (2007). Antimicrobial activity and bioactive compounds of Portuguese wild edible mushrooms methanolic extracts. European Food Research and Technology 225: 151-156.
  • Bégin A, Van Calsteren MR (1999). Antimicrobial films produced from chitosan. International Journal of Biological Macromolecules 26(1): 63-67.
  • Butler BL, Vergano PJ, Testin RF, Bunn JM Wiles JL (1996). Mechanical and barrier properties of edible chitosan films as affected by composition and storage. Journal of Food Science 61(5): 953-956.
  • Bülbül M, Süfer Ö, Bozok F (2023). Bazı Aromatik Bitkilerin Uçucu Yağlarını İçeren Yenebilir Film Üretimi. In Talaz O (edt.) Fen Bilimleri ve Matematik Alanında Gelişmeler. Ankara: Platanus Publishing. pp: 99-128.
  • Campalani C, Bertuol I, Bersani C, Calmanti R, Filonenko S, Rodríguez-Padrón D, Perosa A (2024). Green extraction of chitin from hard spider crab shells. Carbohydrate Polymers 345: 122565.
  • Cheung LM, Cheung PC, Ooi VE (2003). Antioxidant activity and total phenolics of edible mushroom extracts. Food Chemistry 81(2): 249-255.
  • Ebrahimi SS, Hamzeh Y, Ashori A, Roohani M, Marlin N, Spigno G (2024). Ozone-activated lignocellulose films blended with chitosan for edible film production. International Journal of Biological Macromolecules 270: 132285. Gao Y, Tang W, Gao HE, Chan E, Lan J, Li X, Zhou S (2005). Antimicrobial activity of the medicinal mushroom Ganoderma. Food Reviews International 21(2): 211-229.
  • Gezer K, Duru ME, Kivrak I, Turkoglu A, Mercan N, Turkoglu H, Gulcan S (2006). Free-radical scavenging capacity and antimicrobial activity of wild edible mushroom from Turkey. African Journal of Biotechnology 5(20): 1924-1928.
  • Gómez-Estaca J, López-Lacey A, Gómez-Guillén MC, López-Caballero ME, Montero P (2009). Antimicrobial activity of composite edible films based on fish gelatin and chitosan incorporated with clove essential oil. Journal of Aquatic Food Product Technology 18(1-2): 46-52.
  • Goy RC, Britto DD, Assis OB (2009). A review of the antimicrobial activity of chitosan. Polímeros 19: 241-247.
  • Gökyermez M, Süfer Ö, Bozok F (2023). Edible film production containing Amanita caesarea and Boletus reticulatus extracts. In: Akpınar A (edt.), Research on Mathematics and Science- III. Özgür Publications. pp. 1-26.
  • Gutiérrez, TJ, Tomy J (2017). Chitosan applications for the food industry. In: Ahmed S, Ikram S (eds), Chitosan: Derivatives, Composites and Applications. pp. 183-232.
  • Handayasari F, Suyatma NE, Nurjanah S (2019). Physiochemical and antibacterial analysis of gelatin–chitosan edible film with the addition of nitrite and garlic essential oil by response surface methodology. Journal of Food Processing and Preservation 43(12): e14265.
  • Hromiš NM, Lazić VL, Popović SZ, Šuput DZ, Bulut SN (2017). Antioxidative activity of chitosan and chitosan-based biopolymer film. Food and Feed Research 44(2): 91-100.
  • Jayakumar T, Thomas PA, Geraldine P (2009). In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innovative Food Science & Emerging Technologies 10(2): 228-234.
  • John S (2022). Fungal Biopolymers as an alternative construction material. In: John S (edt.) Fungal Biopolymers and Biocomposites, Prospects and Avenues Singapore: Springer Nature. pp. 169-188.
  • Kaya E, Kahyaoglu LN, Sumnu G (2022). Development of curcumin incorporated composite films based on chitin and glucan complexes extracted from Agaricus bisporus for active packaging of chicken breast meat. International Journal of Biological Macromolecules 221: 536-546.
  • Kaya M, Ravikumar P, Ilk S, Mujtaba M, Akyuz L, Labidi J, Erkul SK (2018). Production and characterization of chitosan based edible films from Berberis crataegina's fruit extract and seed oil. Innovative Food Science & Emerging Technologies 45: 287-297.
  • Ke CL, Deng FS, Chuang CY, Lin CH (2021). Antimicrobial actions and applications of chitosan. Polymers 13(6): 904.
  • Kittur FS, Kumar KR, Tharanathan RN (1998). Functional packaging properties of chitosan films. Zeitschrift für Lebensmitteluntersuchung und-Forschung A 206: 44-47.
  • Koc B, Akyuz L, Cakmak YS, Sargin I, Salaberria AM, Labidi J, Kaya M (2020). Production and characterization of chitosan-fungal extract films. Food Bioscience 35: 10054.
  • Kong M, Chen XG, Xing K, Park HJ (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology 144(1): 51-63.
  • Kumar A, Hasan M, Mangaraj S, Pravitha M, Verma DK, Srivastav PP (2022). Trends in edible packaging films and its prospective future in food: a review. Applied Food Research 2(1): 100118.
  • Kumar H, Bhardwaj K, Sharma R, Nepovimova E, Cruz-Martins N, Dhanjal DS, Kuča K (2021). Potential usage of edible mushrooms and their residues to retrieve valuable supplies for industrial applications. Journal of Fungi 7(6): 427.
  • Lakhiar IA, Yan H, Zhang J, Wang G, Deng S, Bao R, Wang X. (2024). Plastic pollution in agriculture as a threat to food security, the ecosystem, and the environment: An overview. Agronomy 14(3): 548.
  • Leceta I, Guerrero P, Cabezudo S, de la Caba K (2013). Environmental assessment of chitosan-based films. Journal of Cleaner Production 41: 312-318.
  • Ma Q, Gao X, Bi X, Xia M, Han Q, Peng M, Wang M (2021). Combination of steam explosion and ionic liquid pretreatments for efficient utilization of fungal chitin from citric acid fermentation residue. Biomass and Bioenergy 145: 105967.
  • Mau JL, Lin HC, Chen CC (2002). Antioxidant properties of several medicinal mushrooms. Journal of Agricultural and Food Chemistry 50(21): 6072-6077.
  • Parveen A, Abbas MG, Keefover-Ring K, Binyameen M, Mozūraitis R, Azeem M (2024). Chemical Composition of Essential Oils from Natural Populations of Artemisia scoparia collected at different altitudes: Antibacterial, mosquito repellent, and larvicidal effects. Molecules 29(6): 1359.
  • Priyadarshi, R., Kumar, B., Negi, YS. (2018). Chitosan film incorporated with citric acid and glycerol as an active packaging material for extension of green chilli shelf life. Carbohydrate polymers 195: 329-338.
  • Puttaraju NG, Venkateshaiah SU, Dharmesh SM, Urs SMN, Somasundaram R (2006). Antioxidant activity of indigenous edible mushrooms. Journal of Agricultural and Food Chemistry 54(26): 9764-9772.
  • Raafat D, Sahl HG (2009). Chitosan and its antimicrobial potential–a critical literature survey. Microbial Biotechnology 2(2): 186-201.
  • Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6): 1457-1465.
  • Safarzadeh S, Mozafari MR, Naghib SM (2024). Chitosan-incorporated bioceramic-based nanomaterials for localized release of therapeutics and bone regeneration: An overview of recent advances and progresses. Current Organic Chemistry 28(15): 1190-1214.
  • Sánchez-González L, Vargas M, González-Martínez C, Chiralt A, Cháfer M (2019). Characterization of edible films based on hydroxypropylmethylcellulose and tea tree essential oil. Food Hydrocolloids 23(8): 2102-2109.
  • Sarfraz MH, Hayat S, Siddique MH, Aslam B, Ashraf, A, Saqalein M, Muzammil S (2024). Chitosan based coatings and films: A perspective on antimicrobial, antioxidant, and intelligent food packaging. Progress in Organic Coatings 188: 108235.
  • Savin S, Craciunescu O, Oancea A, Ilie D, Ciucan T, Antohi LS, Oancea F (2020). Antioxidant, cytotoxic and antimicrobial activity of chitosan preparations extracted from Ganoderma lucidum mushroom. Chemistry & Biodiversity 17(7): e2000175.
  • Sedefoglu N, Er S, Veryer K, Zalaoglu Y, Bozok F (2023). Green synthesized CuO nanoparticles using macrofungi extracts: Characterization, nanofertilizer and antibacterial effects. Materials Chemistry and Physics 309: 128393.
  • Simsek M, Eke B, Demir H (2020). Characterization of carboxymethyl cellulose-based antimicrobial films incorporated with plant essential oils. International Journal of Biological Macromolecules 163: 2172-2179.
  • Singh M, Saroj R, Kaur D (2024). Optimized chitosan edible coating for guava and its characterization. Measurement. Food 14: 100145.
  • Siripatrawan U, Harte BR (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids 24(8): 770-775.
  • Smolskaitė L, Venskutonis PR, Talou T (2015). Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT-Food Science and Technology 60(1): 462-471.
  • Wińska K, Mączka W, Łyczko J, Grabarczyk M, Czubaszek A, Szumny A (2019). Essential oils as antimicrobial agents-myth or real alternative?. Molecules 24(11): 2130.
  • Xie Y, Xie Z, Zhou N (2001). The study on anti-Helicobacter pylori mechanisms of chitosans in vitro. Chinese Journal of Digestion 24(11): 655-658.
  • Xu D, Chen T, Liu Y (2021). The physical properties, antioxidant and antimicrobial activity of chitosan–gelatin edible films incorporated with the extract from hop plant. Polymer Bulletin 78: 3607-3624.
  • Xu YX, Kim KM, Hanna MA, Nag D (2005). Chitosan–starch composite film: preparation and characterization. Industrial crops and Products 21(2): 185-192.
  • Yang JH, Lin, HC, Mau JL (2002). Antioxidant properties of several commercial mushrooms. Food Chemistry 77(2): 229-235.
  • Yen MT, Yang JH, Mau JL (2008). Antioxidant properties of chitosan from crab shells. Carbohydrate Polymers 74(4): 840-844.
  • Yuan G, Chen X, Li D (2016). Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Research International 89: 117-128.

Farklı makromantar ekstraktları ve bitki uçucu yağları eklenerek üretilen kitosan bazlı yenebilir filmlerin antimikrobiyal aktiviteleri

Year 2025, Volume: 9 Issue: 1, 1 - 5
https://doi.org/10.30616/ajb.1542112

Abstract

Bu araştırma, farklı mantar ekstraktı ve bitki uçucu yağı içeren kitosan temelli yenilebilir filmlerin antimikrobiyal aktivitesini açığa çıkarmayı amaçlamaktadır. Bu çalışmada, Osmaniye’nin farklı lokalitelerinden toplanan Satureja cuneifolia Ten., Mentha longifolia (L.) Hudson subsp. typhoides (Brig.) Harley var. typhoides (L.) Hudson’un uçucu yağları ve Amanita caesarea (Scop.) Pers. ve Boletus reticulatus Schaeff. ekstraktları kullanılarak yenebilir filmler üretilmiştir. Üretilen bu filmlerin Escherichia coli üzerindeki antimikrobiyal aktiviteleri Kirby-Bauer disk difüzyon testi kullanılarak araştırılmıştır. Araştırma sonunda, S. cuneifolia Ten.’in uçucu yağının (%3) ilave edilmesiyle üretilen yenilebilir filmin en yüksek antimikrobiyal aktiviteye sahip olduğu belirlenmiştir. Bununla birlikte, üretilen tüm yenebilir filmlerin antimikrobiyal aktiviteye sahip olduğu söylenebilir.

Project Number

OKÜBAP-2021-PT3-004 and OKÜBAP-2021-PT3-006

References

  • Altiok D, Altiok E, Tihminlioglu F (2010). Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. Journal of Materials Science: Materials in Medicine 21: 2227-2236.
  • Amin T, Naik HR, Hussain SZ, Wani SM (2024). Polysaccharide Based Films for Food Packaging: Fundamentals, Properties and Applications. Singapore: Springer Verlag.
  • Barros L, Calhelha RC, Vaz JA, Ferreira IC, Baptista P, Estevinho LM (2007). Antimicrobial activity and bioactive compounds of Portuguese wild edible mushrooms methanolic extracts. European Food Research and Technology 225: 151-156.
  • Bégin A, Van Calsteren MR (1999). Antimicrobial films produced from chitosan. International Journal of Biological Macromolecules 26(1): 63-67.
  • Butler BL, Vergano PJ, Testin RF, Bunn JM Wiles JL (1996). Mechanical and barrier properties of edible chitosan films as affected by composition and storage. Journal of Food Science 61(5): 953-956.
  • Bülbül M, Süfer Ö, Bozok F (2023). Bazı Aromatik Bitkilerin Uçucu Yağlarını İçeren Yenebilir Film Üretimi. In Talaz O (edt.) Fen Bilimleri ve Matematik Alanında Gelişmeler. Ankara: Platanus Publishing. pp: 99-128.
  • Campalani C, Bertuol I, Bersani C, Calmanti R, Filonenko S, Rodríguez-Padrón D, Perosa A (2024). Green extraction of chitin from hard spider crab shells. Carbohydrate Polymers 345: 122565.
  • Cheung LM, Cheung PC, Ooi VE (2003). Antioxidant activity and total phenolics of edible mushroom extracts. Food Chemistry 81(2): 249-255.
  • Ebrahimi SS, Hamzeh Y, Ashori A, Roohani M, Marlin N, Spigno G (2024). Ozone-activated lignocellulose films blended with chitosan for edible film production. International Journal of Biological Macromolecules 270: 132285. Gao Y, Tang W, Gao HE, Chan E, Lan J, Li X, Zhou S (2005). Antimicrobial activity of the medicinal mushroom Ganoderma. Food Reviews International 21(2): 211-229.
  • Gezer K, Duru ME, Kivrak I, Turkoglu A, Mercan N, Turkoglu H, Gulcan S (2006). Free-radical scavenging capacity and antimicrobial activity of wild edible mushroom from Turkey. African Journal of Biotechnology 5(20): 1924-1928.
  • Gómez-Estaca J, López-Lacey A, Gómez-Guillén MC, López-Caballero ME, Montero P (2009). Antimicrobial activity of composite edible films based on fish gelatin and chitosan incorporated with clove essential oil. Journal of Aquatic Food Product Technology 18(1-2): 46-52.
  • Goy RC, Britto DD, Assis OB (2009). A review of the antimicrobial activity of chitosan. Polímeros 19: 241-247.
  • Gökyermez M, Süfer Ö, Bozok F (2023). Edible film production containing Amanita caesarea and Boletus reticulatus extracts. In: Akpınar A (edt.), Research on Mathematics and Science- III. Özgür Publications. pp. 1-26.
  • Gutiérrez, TJ, Tomy J (2017). Chitosan applications for the food industry. In: Ahmed S, Ikram S (eds), Chitosan: Derivatives, Composites and Applications. pp. 183-232.
  • Handayasari F, Suyatma NE, Nurjanah S (2019). Physiochemical and antibacterial analysis of gelatin–chitosan edible film with the addition of nitrite and garlic essential oil by response surface methodology. Journal of Food Processing and Preservation 43(12): e14265.
  • Hromiš NM, Lazić VL, Popović SZ, Šuput DZ, Bulut SN (2017). Antioxidative activity of chitosan and chitosan-based biopolymer film. Food and Feed Research 44(2): 91-100.
  • Jayakumar T, Thomas PA, Geraldine P (2009). In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innovative Food Science & Emerging Technologies 10(2): 228-234.
  • John S (2022). Fungal Biopolymers as an alternative construction material. In: John S (edt.) Fungal Biopolymers and Biocomposites, Prospects and Avenues Singapore: Springer Nature. pp. 169-188.
  • Kaya E, Kahyaoglu LN, Sumnu G (2022). Development of curcumin incorporated composite films based on chitin and glucan complexes extracted from Agaricus bisporus for active packaging of chicken breast meat. International Journal of Biological Macromolecules 221: 536-546.
  • Kaya M, Ravikumar P, Ilk S, Mujtaba M, Akyuz L, Labidi J, Erkul SK (2018). Production and characterization of chitosan based edible films from Berberis crataegina's fruit extract and seed oil. Innovative Food Science & Emerging Technologies 45: 287-297.
  • Ke CL, Deng FS, Chuang CY, Lin CH (2021). Antimicrobial actions and applications of chitosan. Polymers 13(6): 904.
  • Kittur FS, Kumar KR, Tharanathan RN (1998). Functional packaging properties of chitosan films. Zeitschrift für Lebensmitteluntersuchung und-Forschung A 206: 44-47.
  • Koc B, Akyuz L, Cakmak YS, Sargin I, Salaberria AM, Labidi J, Kaya M (2020). Production and characterization of chitosan-fungal extract films. Food Bioscience 35: 10054.
  • Kong M, Chen XG, Xing K, Park HJ (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology 144(1): 51-63.
  • Kumar A, Hasan M, Mangaraj S, Pravitha M, Verma DK, Srivastav PP (2022). Trends in edible packaging films and its prospective future in food: a review. Applied Food Research 2(1): 100118.
  • Kumar H, Bhardwaj K, Sharma R, Nepovimova E, Cruz-Martins N, Dhanjal DS, Kuča K (2021). Potential usage of edible mushrooms and their residues to retrieve valuable supplies for industrial applications. Journal of Fungi 7(6): 427.
  • Lakhiar IA, Yan H, Zhang J, Wang G, Deng S, Bao R, Wang X. (2024). Plastic pollution in agriculture as a threat to food security, the ecosystem, and the environment: An overview. Agronomy 14(3): 548.
  • Leceta I, Guerrero P, Cabezudo S, de la Caba K (2013). Environmental assessment of chitosan-based films. Journal of Cleaner Production 41: 312-318.
  • Ma Q, Gao X, Bi X, Xia M, Han Q, Peng M, Wang M (2021). Combination of steam explosion and ionic liquid pretreatments for efficient utilization of fungal chitin from citric acid fermentation residue. Biomass and Bioenergy 145: 105967.
  • Mau JL, Lin HC, Chen CC (2002). Antioxidant properties of several medicinal mushrooms. Journal of Agricultural and Food Chemistry 50(21): 6072-6077.
  • Parveen A, Abbas MG, Keefover-Ring K, Binyameen M, Mozūraitis R, Azeem M (2024). Chemical Composition of Essential Oils from Natural Populations of Artemisia scoparia collected at different altitudes: Antibacterial, mosquito repellent, and larvicidal effects. Molecules 29(6): 1359.
  • Priyadarshi, R., Kumar, B., Negi, YS. (2018). Chitosan film incorporated with citric acid and glycerol as an active packaging material for extension of green chilli shelf life. Carbohydrate polymers 195: 329-338.
  • Puttaraju NG, Venkateshaiah SU, Dharmesh SM, Urs SMN, Somasundaram R (2006). Antioxidant activity of indigenous edible mushrooms. Journal of Agricultural and Food Chemistry 54(26): 9764-9772.
  • Raafat D, Sahl HG (2009). Chitosan and its antimicrobial potential–a critical literature survey. Microbial Biotechnology 2(2): 186-201.
  • Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6): 1457-1465.
  • Safarzadeh S, Mozafari MR, Naghib SM (2024). Chitosan-incorporated bioceramic-based nanomaterials for localized release of therapeutics and bone regeneration: An overview of recent advances and progresses. Current Organic Chemistry 28(15): 1190-1214.
  • Sánchez-González L, Vargas M, González-Martínez C, Chiralt A, Cháfer M (2019). Characterization of edible films based on hydroxypropylmethylcellulose and tea tree essential oil. Food Hydrocolloids 23(8): 2102-2109.
  • Sarfraz MH, Hayat S, Siddique MH, Aslam B, Ashraf, A, Saqalein M, Muzammil S (2024). Chitosan based coatings and films: A perspective on antimicrobial, antioxidant, and intelligent food packaging. Progress in Organic Coatings 188: 108235.
  • Savin S, Craciunescu O, Oancea A, Ilie D, Ciucan T, Antohi LS, Oancea F (2020). Antioxidant, cytotoxic and antimicrobial activity of chitosan preparations extracted from Ganoderma lucidum mushroom. Chemistry & Biodiversity 17(7): e2000175.
  • Sedefoglu N, Er S, Veryer K, Zalaoglu Y, Bozok F (2023). Green synthesized CuO nanoparticles using macrofungi extracts: Characterization, nanofertilizer and antibacterial effects. Materials Chemistry and Physics 309: 128393.
  • Simsek M, Eke B, Demir H (2020). Characterization of carboxymethyl cellulose-based antimicrobial films incorporated with plant essential oils. International Journal of Biological Macromolecules 163: 2172-2179.
  • Singh M, Saroj R, Kaur D (2024). Optimized chitosan edible coating for guava and its characterization. Measurement. Food 14: 100145.
  • Siripatrawan U, Harte BR (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids 24(8): 770-775.
  • Smolskaitė L, Venskutonis PR, Talou T (2015). Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT-Food Science and Technology 60(1): 462-471.
  • Wińska K, Mączka W, Łyczko J, Grabarczyk M, Czubaszek A, Szumny A (2019). Essential oils as antimicrobial agents-myth or real alternative?. Molecules 24(11): 2130.
  • Xie Y, Xie Z, Zhou N (2001). The study on anti-Helicobacter pylori mechanisms of chitosans in vitro. Chinese Journal of Digestion 24(11): 655-658.
  • Xu D, Chen T, Liu Y (2021). The physical properties, antioxidant and antimicrobial activity of chitosan–gelatin edible films incorporated with the extract from hop plant. Polymer Bulletin 78: 3607-3624.
  • Xu YX, Kim KM, Hanna MA, Nag D (2005). Chitosan–starch composite film: preparation and characterization. Industrial crops and Products 21(2): 185-192.
  • Yang JH, Lin, HC, Mau JL (2002). Antioxidant properties of several commercial mushrooms. Food Chemistry 77(2): 229-235.
  • Yen MT, Yang JH, Mau JL (2008). Antioxidant properties of chitosan from crab shells. Carbohydrate Polymers 74(4): 840-844.
  • Yuan G, Chen X, Li D (2016). Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Research International 89: 117-128.
There are 51 citations in total.

Details

Primary Language English
Subjects Microbiology (Other)
Journal Section Articles
Authors

Kağan Veryer 0000-0002-0227-1619

Özge Süfer 0000-0001-8337-6318

Merve Bülbül 0000-0002-8816-2180

Mukaddes Gökyermez 0009-0008-9635-1329

Fuat Bozok 0000-0002-9370-7712

Project Number OKÜBAP-2021-PT3-004 and OKÜBAP-2021-PT3-006
Early Pub Date February 15, 2025
Publication Date
Submission Date September 2, 2024
Acceptance Date October 20, 2024
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Veryer, K., Süfer, Ö., Bülbül, M., Gökyermez, M., et al. (2025). Antimicrobial activities of chitosan-based edible films produced by adding different macrofungi extracts and plants essential oils. Anatolian Journal of Botany, 9(1), 1-5. https://doi.org/10.30616/ajb.1542112
AMA Veryer K, Süfer Ö, Bülbül M, Gökyermez M, Bozok F. Antimicrobial activities of chitosan-based edible films produced by adding different macrofungi extracts and plants essential oils. Ant J Bot. February 2025;9(1):1-5. doi:10.30616/ajb.1542112
Chicago Veryer, Kağan, Özge Süfer, Merve Bülbül, Mukaddes Gökyermez, and Fuat Bozok. “Antimicrobial Activities of Chitosan-Based Edible Films Produced by Adding Different Macrofungi Extracts and Plants Essential Oils”. Anatolian Journal of Botany 9, no. 1 (February 2025): 1-5. https://doi.org/10.30616/ajb.1542112.
EndNote Veryer K, Süfer Ö, Bülbül M, Gökyermez M, Bozok F (February 1, 2025) Antimicrobial activities of chitosan-based edible films produced by adding different macrofungi extracts and plants essential oils. Anatolian Journal of Botany 9 1 1–5.
IEEE K. Veryer, Ö. Süfer, M. Bülbül, M. Gökyermez, and F. Bozok, “Antimicrobial activities of chitosan-based edible films produced by adding different macrofungi extracts and plants essential oils”, Ant J Bot, vol. 9, no. 1, pp. 1–5, 2025, doi: 10.30616/ajb.1542112.
ISNAD Veryer, Kağan et al. “Antimicrobial Activities of Chitosan-Based Edible Films Produced by Adding Different Macrofungi Extracts and Plants Essential Oils”. Anatolian Journal of Botany 9/1 (February 2025), 1-5. https://doi.org/10.30616/ajb.1542112.
JAMA Veryer K, Süfer Ö, Bülbül M, Gökyermez M, Bozok F. Antimicrobial activities of chitosan-based edible films produced by adding different macrofungi extracts and plants essential oils. Ant J Bot. 2025;9:1–5.
MLA Veryer, Kağan et al. “Antimicrobial Activities of Chitosan-Based Edible Films Produced by Adding Different Macrofungi Extracts and Plants Essential Oils”. Anatolian Journal of Botany, vol. 9, no. 1, 2025, pp. 1-5, doi:10.30616/ajb.1542112.
Vancouver Veryer K, Süfer Ö, Bülbül M, Gökyermez M, Bozok F. Antimicrobial activities of chitosan-based edible films produced by adding different macrofungi extracts and plants essential oils. Ant J Bot. 2025;9(1):1-5.

Anatolian Journal of Botany is licensed under CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1.