Review
BibTex RIS Cite

Use of Bacteriophages as Antimicrobial Agents

Year 2017, Volume: 15 Issue: 2, 172 - 181, 11.08.2017
https://doi.org/10.24323/akademik-gida.333674

Abstract

Bacteriophages represent
one of the most abundant biological populations in nature and
are defined as bacterial viruses that can kill
specific target bacteria. Bacteriophages had been used to treat bacterial
infections at the beginning of the 20th century. However, discovery
of penicillin and development of antibiotic industry caused the uses of
bacteriophage as an antibacterial agent to be ignored. Gaining resistance to
antibiotics of pathogenic bacteria brought up bacteriophages application again.
In recent years, studies have
been increasing on the uses of bacteriophages against pathogenic bacteria and
the development of a treatment method called "phage therapy".
Bacteriophages have been used as an antibacterial
agent to control pathogenic bacteria in foods and to combat pathogenic bacteria
infections in animals and humans in some countries. Moreover, bacteriophages
have lost their activities because of exposure to adverse effects such as physicochemical
properties, preventive components and storage conditions of food and high
acidity, digestive enzymes and bile during their passage along the
gastrointestinal system after taken orally. Studies have revealed that
microencapsulation can be used to protect bacteriophages against adverse
effects of components, physicochemical properties and storage conditions of
food,
and gastrointestinal system. In this study, the use of
bacteriophages as antibacterial agents in foods and the releases of
microencapsulated bacteriophages in the conditions of in vitro gastrointestinal system are reviewed.

References

  • [1] Anonim. 2016. https://tr.wikipedia.org/wiki/Bakteriyofaj. Erişim Tarihi: 18.08.2016.
  • [2] Nobrega, F., Costa, A., Kluskens, L., Azeredo, J., 2015. Revisiting phage therapy: new applications for old resources. Trends in Microbiology 23(4): 185-191.
  • [3] Tsonos, J., Vandenheuvel, D., Briers, Y., De Greve, H., Hernalsteens, J.P., Lavigne, R., 2014. Hurdles in bacteriophage therapy: Deconstructing the parameters. Veterinary Microbiology 171: 460-469.
  • [4] Snyder, A.B., Perry, J.J., Yousef, A.E., 2016. Developing and optimizing bacteriophage treatment to control enterohemorrhagic Escherichia coli on fresh produce. International Journal of Food Microbiology 236: 90-97.
  • [5] Beke, G., Stano, M., Klucar, L., 2016. Modelling the interaction between bacteriophages and their bacterial hosts. Mathematical Biosciences 279: 27-32.
  • [6] Moreira, H.H., Santos, M.R., Meireles, G.D., Vanetti, C., de Oliveira P.C., 2013. Use of bacteriophages to reduce Salmonella in chicken skin in comparison with chemical agents. Food Research International 52(1): 75-81.
  • [7] Cooper, I.A., 2016. A review of current methods using bacteriophages in live animals, food and animal products intended for human consumption. Journal of Microbiological Methods 130: 38-47.
  • [8] Esteban, P.P., Jenkins, A.T., Arnot, T.C., 2016. Elucidation of the mechanisms of action of Bacteriophage K/nano-emulsion formulations against S. aureus via measurement of particle size and zeta potential. Colloids and Surfaces B: Biointerfaces 139: 87-94.
  • [9] Saygılı, D., Karagözlü, C., 2017. Bakteriyofaj enkapsülasyonu ve potansiyel uygulamaları. Gıda 42(1): 58-66.
  • [10] Harper, D.R., Mcconville, M., Anderson, F.J., Enright, M.J., 2015. Molecular Medical Microbiology Second Edition Volume I Chapter 31. Ed. Tang Y., Sussman M., Liu D., Poxton I., Schwartzman J. Academic Press, Elsevier, pp.567-581.
  • [11] Pulit, A.C., Mitula, P., Sliwka, P., Laba, W., Skaradzinska, A., 2015. Bacteriophage encapsulation: Trends and potential applications. Trends in Food Science & Technology 45: 212-221.
  • [12] Chatain, M.H.L., 2014. The factors affecting effectiveness of treatment in phages therapy. Frontiers in Microbiology 5(51): 1-6.
  • [13] Oliveira, M., Viñas, I., Colàs, P., Anguera, M., Usall, J., Abadias, M., 2014. Effectiveness of a bacteriophage in reducing Listeria monocytogenes on fresh-cut fruits and fruit juices. Food Microbiology 38: 137-142.
  • [14] Sağlam, S., 2014. Tavuk İşletmelerinden ve Tavuk Etlerinden İzole Edilen Listeria spp.’ler Üzerine Listextm P100 Bakteriyofajının Etkisi. Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, 73 ss. Adana.
  • [15] Liu, H., Niu, Y.D., Meng, R., Wang, J., Li, J., Johnson, R.P., McAllister, T.A., Stanford, K., 2015. Control of Escherichia coli O157 on beef at 37, 22 and 4C by T5-, T1-, T4- and O1-like bacteriophages. Food Microbiology 51: 69-73.
  • [16] Endersen, L., Coffey, A., Neve, H., McAuliffe, O., Ross, R.P., O’Mahony, J.M., 2013. Isolation and characterisation of six novel mycobacteriophages and investigation of their antimicrobial potential in milk. International Dairy Journal 28: 8-14.
  • [17] Gouvea, D.M., Mendonça, R.C.S., Lopez, M.E.S., Batalha, L.S., 2016. Absorbent food pads containing bacteriophages for potential antimicrobial use in refrigerated food products. LWT - Food Science and Technology 67: 159-166.
  • [18] El Haddad, L., Roy, J.P., Khalil, G.E., St-Gelais, D., Champagne, C.P., Labrie, S., Moineau, S., 2016. Efficacy of two Staphylococcus aureus phage cocktails in cheese production. International Journal of Food Microbiology 217: 7-13.
  • [19] Singla, S., Harjai, K., Raza, K., Wadhwa, S., Katare, O.P., Chhibber, S., 2016. Phospholipid vesicles encapsulated bacteriophage: A novel approachto enhance phage biodistributions. Journal of Virological Methods 236: 68-76.
  • [20] Stanford, K., Mcallister, T.A., Niu, Y.D., Stephens, T.P., Mazzocco, A., Waddell, T.E., Johnson, R.P., 2010. Oral delivery systems for encapsulated bacteriophages targeted at Escherichia coli O157:H7 in feedlot cattle. Journal of Food Protection 73(7): 1304-1312.
  • [21] Denou, E., Bruttin, A., Barretto, C., Ngom-Bru, C., Brüssow, H., Zuber, S., 2009. T4 phages against Escherichia coli diarrhea: Potential and problems. Virology 388: 21-30.
  • [22] Tanji, Y., Shimada,T., Fukudomi, H., Miyanaga, K., Nakai, Y., Unno, H., 2005. Therapeutic use of phage cocktail for controlling Escherichia coli O157:H7 in gastrointestinal tract of mice. Journal of Bioscience and Bioengineering 100(3): 280-287.
  • [23] Jamalludeen, N., Johnson, R.P., Shewen, P.E., Gyles, C.L., 2009. Evaluation of bacteriophages for prevention and treatment of diarrhea due to experimental enterotoxigenic Escherichia coli O149 infection of pigs. Veterinary Microbiology 136: 135-141.
  • [24] Ma, Y., Pacan, J.C., Wang, Q., Xu, Y., Huang, X., Korenevsky, A., Sabour, P.M., 2008. Microencapsulation of bacteriophage Felix O1 into chitosan-alginate microspheres for oral delivery. Applied and Environmental Microbiology 8: 799-805.
  • [25] Tang, Z., Huang, X., Baxi, S., Chambers, J.R., Sabour, P.M., Wang, Q., 2013. Whey protein improves survival and release characteristics of bacteriophage Felix O1 encapsulated in alginate microspheres. Food Research International 52: 460-466.
  • [26] Çomak Göçer, E.M., Aşçı Arslan, A., Küçükçetin, A., Ergin, F., 2013. Probiyotik bakterilerin mikroenkapsülasyonu. Yetişkin ve Çocuklarda Probiyotikler 1(1): 33-37.
  • [27] Silva, P.I., Stringheta, P.C., Teófilo, R.F., De Oliveira, I.R.N., 2013. Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. Journal of Food Engineering 117: 538-544.
  • [28] Dini, C., Islan, G.A., de Urraza, P.J., Castro, G.R., 2012. Novel biopolymer matrices for microencapsulation of phages: Enhanced protection against acidity and protease activity. Macromolecular Bioscience 12: 1200-1208.
  • [29] Ma, Y., Pacan, J.C., Wang, Sabour, P.M., Huang, X., Xu, Y., 2012. Enhanced alginate microspheres as means of oral delivery of bacteriophage for reducing Staphylococcus aureus intestinal carriage. Food Hydrocolloids 26: 434-440.
  • [30] Samtlebe, M., Ergin, F., Wagner, N., Neve, H., Küçükçetin, A., Franz, C.M.A.P., Heller, K.J., Hinrichs, J., Atamer, Z., 2016. Carrier systems for bacteriophages to supplement food systems: Encapsulation and controlled release to modulate the human gut microbiota. LWT - Food Science and Technology 68: 334-340.
  • [31] Tang, Z., Huang, X., Sabour, P.M., Chambers, J.R., Wang, Q., 2015. Preparation and characterization of dry powder bacteriophage K for intestinal delivery through oral administration. LWT - Food Science and Technology 60: 263-270.
  • [32] Colom, J., Cano-Sarabia, M., Otero, J., Aríñez-Soriano, J., Cortés, P., Maspoch, D., Llagostera, M., 2017. Microencapsulation with alginate/CaCO3: A strategy for improved phage therapy. Scientific Reports 7: 1-10.

Bakteriyofajların Antibakteriyel Ajan Olarak Kullanımı

Year 2017, Volume: 15 Issue: 2, 172 - 181, 11.08.2017
https://doi.org/10.24323/akademik-gida.333674

Abstract

Doğada en fazla bulunan biyolojik topluluklardan
birini temsil eden bakteriyofajlar, kendilerine özgü hedef bakteriyi
öldürebilen bakteri virüsleri olarak tanımlanmaktadır. Bakteriyofajlar, 20.
yüzyılın başlarında bakteriyel enfeksiyonların tedavisinde kullanılmıştır.
Ancak, penisilinin keşfi ve antibiyotik endüstrisinin gelişmesi,
bakteriyofajların antibakteriyel ajan olarak kullanımının göz ardı edilmesine
neden olmuştur. Patojen bakterilerin antibiyotiklere karşı direnç kazanması,
bakteriyofaj uygulamasını yeniden gündeme getirmiştir. Son yıllarda patojen
bakterilere karşı bakteriyofajların kullanıldığı ve “faj terapisi” olarak
adlandırılan tedavi yönteminin geliştirilmesine yönelik çalışmalar hızla
artmaktadır.
Bakteriyofajlar,
gıdalarda patojen bakterilerin kontrolünde ve bazı ülkelerde hayvan ve
insanlarda patojen bakteri enfeksiyonları ile mücadelede antibakteriyel ajan
olarak kullanılmaktadır. Bununla birlikte bakteriyofajlar, gıdanın
fizikokimyasal özellikleri, koruyucu bileşenleri, depolama koşulları ve ağız
yoluyla alınmalarından sonra gastrointestinal sistemden geçişleri sırasında
yüksek asitlik, sindirim enzimleri ve safra gibi olumsuz etkilere maruz
kalmalarından dolayı aktivitelerini kaybetmektedir.
Yapılan çalışmalar
bakteriyofajları, bileşenleri, fizikokimyasal özellikleri ve depolama koşulları
ile gıdanın ve gastrointestinal sistemin olumsuz etkilerine karşı korumak için mikrokapsülasyon
yönteminin kullanılabileceğini ortaya koymuştur. Bu derlemede,
bakteriyofajların gıdalarda antibakteriyel ajan olarak kullanımı ve
mikrokapsüle bakteriyofajların in vitro gastrointestinal
sistem koşullarında salınımları ile ilgili bilgi verilmesi amaçlanmaktadır.

References

  • [1] Anonim. 2016. https://tr.wikipedia.org/wiki/Bakteriyofaj. Erişim Tarihi: 18.08.2016.
  • [2] Nobrega, F., Costa, A., Kluskens, L., Azeredo, J., 2015. Revisiting phage therapy: new applications for old resources. Trends in Microbiology 23(4): 185-191.
  • [3] Tsonos, J., Vandenheuvel, D., Briers, Y., De Greve, H., Hernalsteens, J.P., Lavigne, R., 2014. Hurdles in bacteriophage therapy: Deconstructing the parameters. Veterinary Microbiology 171: 460-469.
  • [4] Snyder, A.B., Perry, J.J., Yousef, A.E., 2016. Developing and optimizing bacteriophage treatment to control enterohemorrhagic Escherichia coli on fresh produce. International Journal of Food Microbiology 236: 90-97.
  • [5] Beke, G., Stano, M., Klucar, L., 2016. Modelling the interaction between bacteriophages and their bacterial hosts. Mathematical Biosciences 279: 27-32.
  • [6] Moreira, H.H., Santos, M.R., Meireles, G.D., Vanetti, C., de Oliveira P.C., 2013. Use of bacteriophages to reduce Salmonella in chicken skin in comparison with chemical agents. Food Research International 52(1): 75-81.
  • [7] Cooper, I.A., 2016. A review of current methods using bacteriophages in live animals, food and animal products intended for human consumption. Journal of Microbiological Methods 130: 38-47.
  • [8] Esteban, P.P., Jenkins, A.T., Arnot, T.C., 2016. Elucidation of the mechanisms of action of Bacteriophage K/nano-emulsion formulations against S. aureus via measurement of particle size and zeta potential. Colloids and Surfaces B: Biointerfaces 139: 87-94.
  • [9] Saygılı, D., Karagözlü, C., 2017. Bakteriyofaj enkapsülasyonu ve potansiyel uygulamaları. Gıda 42(1): 58-66.
  • [10] Harper, D.R., Mcconville, M., Anderson, F.J., Enright, M.J., 2015. Molecular Medical Microbiology Second Edition Volume I Chapter 31. Ed. Tang Y., Sussman M., Liu D., Poxton I., Schwartzman J. Academic Press, Elsevier, pp.567-581.
  • [11] Pulit, A.C., Mitula, P., Sliwka, P., Laba, W., Skaradzinska, A., 2015. Bacteriophage encapsulation: Trends and potential applications. Trends in Food Science & Technology 45: 212-221.
  • [12] Chatain, M.H.L., 2014. The factors affecting effectiveness of treatment in phages therapy. Frontiers in Microbiology 5(51): 1-6.
  • [13] Oliveira, M., Viñas, I., Colàs, P., Anguera, M., Usall, J., Abadias, M., 2014. Effectiveness of a bacteriophage in reducing Listeria monocytogenes on fresh-cut fruits and fruit juices. Food Microbiology 38: 137-142.
  • [14] Sağlam, S., 2014. Tavuk İşletmelerinden ve Tavuk Etlerinden İzole Edilen Listeria spp.’ler Üzerine Listextm P100 Bakteriyofajının Etkisi. Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, 73 ss. Adana.
  • [15] Liu, H., Niu, Y.D., Meng, R., Wang, J., Li, J., Johnson, R.P., McAllister, T.A., Stanford, K., 2015. Control of Escherichia coli O157 on beef at 37, 22 and 4C by T5-, T1-, T4- and O1-like bacteriophages. Food Microbiology 51: 69-73.
  • [16] Endersen, L., Coffey, A., Neve, H., McAuliffe, O., Ross, R.P., O’Mahony, J.M., 2013. Isolation and characterisation of six novel mycobacteriophages and investigation of their antimicrobial potential in milk. International Dairy Journal 28: 8-14.
  • [17] Gouvea, D.M., Mendonça, R.C.S., Lopez, M.E.S., Batalha, L.S., 2016. Absorbent food pads containing bacteriophages for potential antimicrobial use in refrigerated food products. LWT - Food Science and Technology 67: 159-166.
  • [18] El Haddad, L., Roy, J.P., Khalil, G.E., St-Gelais, D., Champagne, C.P., Labrie, S., Moineau, S., 2016. Efficacy of two Staphylococcus aureus phage cocktails in cheese production. International Journal of Food Microbiology 217: 7-13.
  • [19] Singla, S., Harjai, K., Raza, K., Wadhwa, S., Katare, O.P., Chhibber, S., 2016. Phospholipid vesicles encapsulated bacteriophage: A novel approachto enhance phage biodistributions. Journal of Virological Methods 236: 68-76.
  • [20] Stanford, K., Mcallister, T.A., Niu, Y.D., Stephens, T.P., Mazzocco, A., Waddell, T.E., Johnson, R.P., 2010. Oral delivery systems for encapsulated bacteriophages targeted at Escherichia coli O157:H7 in feedlot cattle. Journal of Food Protection 73(7): 1304-1312.
  • [21] Denou, E., Bruttin, A., Barretto, C., Ngom-Bru, C., Brüssow, H., Zuber, S., 2009. T4 phages against Escherichia coli diarrhea: Potential and problems. Virology 388: 21-30.
  • [22] Tanji, Y., Shimada,T., Fukudomi, H., Miyanaga, K., Nakai, Y., Unno, H., 2005. Therapeutic use of phage cocktail for controlling Escherichia coli O157:H7 in gastrointestinal tract of mice. Journal of Bioscience and Bioengineering 100(3): 280-287.
  • [23] Jamalludeen, N., Johnson, R.P., Shewen, P.E., Gyles, C.L., 2009. Evaluation of bacteriophages for prevention and treatment of diarrhea due to experimental enterotoxigenic Escherichia coli O149 infection of pigs. Veterinary Microbiology 136: 135-141.
  • [24] Ma, Y., Pacan, J.C., Wang, Q., Xu, Y., Huang, X., Korenevsky, A., Sabour, P.M., 2008. Microencapsulation of bacteriophage Felix O1 into chitosan-alginate microspheres for oral delivery. Applied and Environmental Microbiology 8: 799-805.
  • [25] Tang, Z., Huang, X., Baxi, S., Chambers, J.R., Sabour, P.M., Wang, Q., 2013. Whey protein improves survival and release characteristics of bacteriophage Felix O1 encapsulated in alginate microspheres. Food Research International 52: 460-466.
  • [26] Çomak Göçer, E.M., Aşçı Arslan, A., Küçükçetin, A., Ergin, F., 2013. Probiyotik bakterilerin mikroenkapsülasyonu. Yetişkin ve Çocuklarda Probiyotikler 1(1): 33-37.
  • [27] Silva, P.I., Stringheta, P.C., Teófilo, R.F., De Oliveira, I.R.N., 2013. Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. Journal of Food Engineering 117: 538-544.
  • [28] Dini, C., Islan, G.A., de Urraza, P.J., Castro, G.R., 2012. Novel biopolymer matrices for microencapsulation of phages: Enhanced protection against acidity and protease activity. Macromolecular Bioscience 12: 1200-1208.
  • [29] Ma, Y., Pacan, J.C., Wang, Sabour, P.M., Huang, X., Xu, Y., 2012. Enhanced alginate microspheres as means of oral delivery of bacteriophage for reducing Staphylococcus aureus intestinal carriage. Food Hydrocolloids 26: 434-440.
  • [30] Samtlebe, M., Ergin, F., Wagner, N., Neve, H., Küçükçetin, A., Franz, C.M.A.P., Heller, K.J., Hinrichs, J., Atamer, Z., 2016. Carrier systems for bacteriophages to supplement food systems: Encapsulation and controlled release to modulate the human gut microbiota. LWT - Food Science and Technology 68: 334-340.
  • [31] Tang, Z., Huang, X., Sabour, P.M., Chambers, J.R., Wang, Q., 2015. Preparation and characterization of dry powder bacteriophage K for intestinal delivery through oral administration. LWT - Food Science and Technology 60: 263-270.
  • [32] Colom, J., Cano-Sarabia, M., Otero, J., Aríñez-Soriano, J., Cortés, P., Maspoch, D., Llagostera, M., 2017. Microencapsulation with alginate/CaCO3: A strategy for improved phage therapy. Scientific Reports 7: 1-10.
There are 32 citations in total.

Details

Journal Section Review Papers
Authors

Firuze Ergin This is me

Gizem Yıldız This is me

Emine Mine Çomak Göçer This is me

Ahmet Küçükçetin

Publication Date August 11, 2017
Submission Date August 9, 2017
Published in Issue Year 2017 Volume: 15 Issue: 2

Cite

APA Ergin, F., Yıldız, G., Çomak Göçer, E. M., Küçükçetin, A. (2017). Bakteriyofajların Antibakteriyel Ajan Olarak Kullanımı. Akademik Gıda, 15(2), 172-181. https://doi.org/10.24323/akademik-gida.333674
AMA Ergin F, Yıldız G, Çomak Göçer EM, Küçükçetin A. Bakteriyofajların Antibakteriyel Ajan Olarak Kullanımı. Akademik Gıda. August 2017;15(2):172-181. doi:10.24323/akademik-gida.333674
Chicago Ergin, Firuze, Gizem Yıldız, Emine Mine Çomak Göçer, and Ahmet Küçükçetin. “Bakteriyofajların Antibakteriyel Ajan Olarak Kullanımı”. Akademik Gıda 15, no. 2 (August 2017): 172-81. https://doi.org/10.24323/akademik-gida.333674.
EndNote Ergin F, Yıldız G, Çomak Göçer EM, Küçükçetin A (August 1, 2017) Bakteriyofajların Antibakteriyel Ajan Olarak Kullanımı. Akademik Gıda 15 2 172–181.
IEEE F. Ergin, G. Yıldız, E. M. Çomak Göçer, and A. Küçükçetin, “Bakteriyofajların Antibakteriyel Ajan Olarak Kullanımı”, Akademik Gıda, vol. 15, no. 2, pp. 172–181, 2017, doi: 10.24323/akademik-gida.333674.
ISNAD Ergin, Firuze et al. “Bakteriyofajların Antibakteriyel Ajan Olarak Kullanımı”. Akademik Gıda 15/2 (August 2017), 172-181. https://doi.org/10.24323/akademik-gida.333674.
JAMA Ergin F, Yıldız G, Çomak Göçer EM, Küçükçetin A. Bakteriyofajların Antibakteriyel Ajan Olarak Kullanımı. Akademik Gıda. 2017;15:172–181.
MLA Ergin, Firuze et al. “Bakteriyofajların Antibakteriyel Ajan Olarak Kullanımı”. Akademik Gıda, vol. 15, no. 2, 2017, pp. 172-81, doi:10.24323/akademik-gida.333674.
Vancouver Ergin F, Yıldız G, Çomak Göçer EM, Küçükçetin A. Bakteriyofajların Antibakteriyel Ajan Olarak Kullanımı. Akademik Gıda. 2017;15(2):172-81.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).